
QUASAR: A Method for
the QUality Assessment
of Software-Intensive System
ARchitectures

Donald Firesmith, Software Engineering Institute

In Collaboration with
Peter Capell, Software Engineering Institute
Joseph P. Elm, Software Engineering Institute
Michael Gagliardi, Software Engineering Institute
Tim Morrow, Software Engineering Institute
Linda Roush, Naval Air Systems Command, U.S. Navy
Lui Sha, University of Illinois at Urbana-Champaign

July 2006

HANDBOOK
CMU/SEI-2006-HB-001

Pittsburgh, PA 15213-3890

QUASAR: A Method for
the QUality Assessment
of Software-Intensive System
ARchitectures

CMU/SEI-2006-HB-001

Donald Firesmith, Software Engineering Institute

In Collaboration with
Peter Capell, Software Engineering Institute
Joseph P. Elm, Software Engineering Institute
Michael Gagliardi, Software Engineering Institute
Tim Morrow, Software Engineering Institute
Linda Roush, Naval Air Systems Command, U.S. Navy
Lui Sha, University of Illinois at Urbana-Champaign

July 2006

Acquisition Support Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Acknowledgements ... ix

Executive Summary ... xi

Abstract.. xv

1 Introduction ... 1
1.1 Intended Audiences .. 1
1.2 Goals of this Handbook .. 2

1.2.1 Properly Document QUASAR... 2
1.2.2 Justify Use of the QUASAR Method ... 3

1.3 Challenges.. 3
1.4 History of Development and Use.. 6

2 QUASAR Overview ... 7
2.1 Objectives of System Architecture Quality Assessments........................... 7
2.2 Philosophy of Architecture Assessment.. 17
2.3 Assumptions ... 18

3 Quality Cases .. 21
3.1 Definition of Quality Cases ... 22

3.1.1 Claims ... 24
3.1.2 Arguments... 28
3.1.3 Evidence ... 31

3.2 Quality Case Diagram... 35
3.3 Potential Concerns ... 42

3.3.1 Use All Quality Factors ... 42
3.3.2 All Quality Factors Not Equally Important 43
3.3.3 Use for Demonstration (Certification) vs. Assessment 43
3.3.4 System Quality Cases vs. QUASAR Architecture Cases 44
3.3.5 During Development vs. End of Development 44

4 QUASAR Teams .. 47
4.1 Assessment Team .. 48

CMU/SEI-2006-HB-001 i

4.2 Architecture Teams... 51
4.2.1 Top-Level Architecture Team ... 51
4.2.2 Subsystem Architecture Teams.. 52

4.3 Requirements Teams.. 53
4.3.1 Top-Level Requirements Team .. 53
4.3.2 Subsystem Requirements Teams... 54

5 QUASAR Phases and Tasks .. 57
5.1 System Architecture Assessment Initiation Phase.................................... 59

5.1.1 System Architecture Assessment Initiation – Preparation 62
5.1.2 System Architecture Assessment Initiation – Meeting.................. 64
5.1.3 System Architecture Assessment Initiation – Follow-Through...... 70

5.2 Subsystem Requirements Review Phase .. 73
5.2.1 Subsystem Requirements Review – Preparation 74
5.2.2 Subsystem Requirements Review – Meeting 78
5.2.3 Subsystem Requirements Review – Follow-Through................... 81

5.3 Subsystem Architecture Assessment Phase .. 84
5.3.1 Subsystem Architecture Assessment – Preparation..................... 84
5.3.2 Subsystem Architecture Assessment – Meeting 89
5.3.3 Subsystem Architecture Assessment – Follow-Through 93

5.4 System Architecture Assessment Summary Phase.................................. 96
5.4.1 System Architecture Assessment Summary – Preparation 100
5.4.2 System Architecture Assessment Summary – Meeting.............. 103
5.4.3 System Architecture Assessment Summary – Follow-Through.. 105

6 QUASAR Work Products.. 109
6.1 System Architecture Assessment Initiation Work Products110

6.1.1 Architecture Assessment Procedure .. 111
6.1.2 Architecture Assessment Training Materials 112
6.1.3 Initial Kickoff Meeting Agenda .. 114
6.1.4 Initial Kickoff Meeting Assessor Notes.. 114
6.1.5 Initial Kickoff Meeting Minutes .. 115
6.1.6 Assessment Schedule .. 116
6.1.7 Assessment Action Item List... 117

6.2 Subsystem Requirements Meeting Work Products117
6.2.1 Subsystem Requirements Review Checklist 118
6.2.2 Subsystem Requirements Review Preparatory Materials 119
6.2.3 Subsystem Requirements Review Presentation Materials 120
6.2.4 Subsystem Requirements Trace .. 121
6.2.5 Subsystem Requirements Review Meeting Agenda................... 122
6.2.6 Subsystem Requirements Review Meeting Assessor Notes...... 123
6.2.7 Subsystem Requirements Review Meeting Outbrief 124

ii CMU/SEI-2006-HB-001

6.2.8 Subsystem Requirements Review Meeting Minutes................... 125
6.3 Subsystem Architecture Assessment Work Products 126

6.3.1 Subsystem Architecture Assessment Checklist.......................... 128
6.3.2 Subsystem Architecture Assessment Preparatory Materials 129
6.3.3 Subsystem Architecture Assessment Presentation Materials..... 130
6.3.4 Subsystem Architecture Assessment Meeting Agenda 130
6.3.5 Subsystem Architecture Assessment Meeting Assessor Notes . 131
6.3.6 Subsystem Architecture Support Matrix...................................... 132
6.3.7 Subsystem Assessment Meeting Outbrief 133
6.3.8 Subsystem Architecture Assessment Meeting Report................ 134

6.4 System Architecture Quality Assessment Summary Work Products 135
6.4.1 System Summary Subsystem Matrix .. 136
6.4.2 System Summary Meeting Presentation Materials 136
6.4.3 System Architecture Assessment Summary Meeting Agenda.... 137
6.4.4 System Architecture Assessment Summary Meeting Assessor

Notes... 138
6.4.5 System Architecture Quality Assessment Summary Report 138

7 QUASAR Lessons Learned.. 141
7.1 System Architecture Assessment Initiation Phase.................................. 141
7.2 Subsystem Requirements Review Phase... 144
7.3 Subsystem Architecture Assessment Phase .. 148
7.4 Miscellaneous Lessons... 154

8 Future Directions .. 157

9 Conclusion .. 163

Appendix A Acronyms and Abbreviations... 165

Appendix B Glossary ... 169

Appendix C Quality .. 175

Appendix D Example Checklists ... 187

Appendix E Example Quality Cases ... 195

Appendix F Example Contract Language .. 243

References... 245

CMU/SEI-2006-HB-001 iii

iv CMU/SEI-2006-HB-001

List of Figures

Figure 1: Assessment Scope in Terms of Subsystems ... 10

Figure 2: Structure of Quality Cases.. 22

Figure 3: Structure of Architectural Quality Cases... 23

Figure 4: Types of Architectural Claims ... 26

Figure 5: Structure of Architectural Arguments .. 29

Figure 6: Types of Architectural Evidence ... 32

Figure 7: Components of Architectural Quality Cases... 36

Figure 8: Layered Structure of Quality Cases.. 39

Figure 9: Example Quality Case Diagram ... 41

Figure 10: Teams and Their Interactions ... 48

Figure 11: QUASAR Phases ... 57

Figure 12: QUASAR Phases and Tasks .. 59

Figure 13: System Architecture Assessment Initiation Phase 61

Figure 14: Subsystem Requirements Review Phase .. 75

Figure 15: Subsystem Architecture Assessment Phase .. 85

Figure 16: Initial Kickoff Meeting Work Products ..111

Figure 17: Subsystem Requirements Meeting Work Products 118

Figure 18: Subsystem Architecture Assessment Work Product Flow.................... 127

Figure 19: Subsystem Architecture Assessment Work Product Relationships 128

CMU/SEI-2006-HB-001 v

Figure 20: Quality Model ... 176

Figure 21: Hierarchy of Usage-Oriented Quality Factors 177

Figure 22: Components of a Quality Requirement .. 184

Figure 23: Components of an Architecture Interoperability Case.......................... 198

Figure 24: Example Interoperability Quality Case Diagram 199

Figure 25: Components of a Performance Case... 205

Figure 26: Example Performance Quality Case Diagram 205

Figure 27: Example Jitter Quality Case Diagram .. 206

Figure 28: Example Latency Quality Case Diagram ... 209

Figure 29: Components of a Security Case .. 214

Figure 30: Example Access Control Quality Case Diagram 216

Figure 31: Integrity as a Quality Subfactor of Security .. 221

Figure 32: Example Integrity Security Quality Case Diagram 222

Figure 33: Example Privacy Quality Case Diagram .. 228

Figure 34: Example Stability Quality Case Diagram.. 238

vi CMU/SEI-2006-HB-001

List of Tables

Table 1: Example Subsystem Support Matrix .. 133

CMU/SEI-2006-HB-001 vii

viii CMU/SEI-2006-HB-001

Acknowledgements

We would like to acknowledge and thank the following organizations and people on whose
work the QUality Assessment of System ARchitectures (QUASAR) method has been largely
based, either directly or indirectly, over the last three years:

• Joint Strike Fighter (JSF) Program Office

• Lockheed Martin JSF Architects

• Safety Case Developers including safety engineers at Adelard LLP

We would like to acknowledge the following individuals from the Software Engineering In-
stitute (SEI) who supported the development of this handbook:

• Rick Barbour, Chief Engineer, Navy, who provided administrative management for SEI
support to the JSF Joint Program Office (JPO)

• Brian Gallagher, Director, Acquisition Support Program (ASP), who provided adminis-
trative leadership for the development of this handbook

• John Goodenough, Chuck Weinstock, and John Hudak, whose work on using the Goal
Structuring Notation to document assurance cases emphasizes the importance of graphi-
cally summarizing quality cases and organizing claims, arguments, and evidence around
individual quality cases [Weinstock 04]

• Susan Kushner, who did a great job editing this handbook

We would like to acknowledge the following SEI individuals who reviewed the draft hand-
book and provided numerous useful comments and recommendations:

• Ron Kohl (SEI Visiting Scientist)

• Harry Levinson

• Tom Merendino, especially with regard to method tailoring

• Mike Phillips

CMU/SEI-2006-HB-001 ix

x CMU/SEI-2006-HB-001

Executive Summary

The quality of a system’s architecture is critical to that system’s success. This is especially
true for software-intensive systems, which often have very complex system and software ar-
chitectures. Thus, a system’s ultimate success depends on how well its architecture helps it to
meet its architecturally significant requirements. The quality of the overall system architec-
ture also depends on the quality of the architectures of the system’s subsystems, the quality of
the architectures of their subsystems, and so on. Unless the architectures of these subsystems
and sub-subsystems adequately help them meet the derived architecturally significant re-
quirements that are allocated to them, it is unlikely that the overall quality of the system ar-
chitecture will be adequate. Without this proper foundation, it becomes very difficult and ex-
pensive to achieve sufficient system quality during design, implementation, and testing.

Unlike modern software that is often organized along object lines, systems typically continue
to be decomposed functionally into subsystems. System architectures therefore tend to be
driven by cohesive groupings of functional requirements (i.e., feature sets). But frequently,
the system’s architecture should be driven as much or more by its quality requirements as by
its functional requirements. In other words, it is important for the system architecture to help
ensure that the system achieves sufficient levels of important quality factors, such as afforda-
bility, availability, capacity, correctness, efficiency, interoperability, modifiability, perform-
ance, portability, producibility, reliability, reusability, robustness, safety, scalability, security,
sustainability, testability, and usability. These quality factors often become the basis of the
most important types of architecturally significant requirements: the quality requirements.
Unfortunately because quality requirements are often poorly specified and legitimate stake-
holder needs may not be specified at all, there is a significant risk that a system’s architecture
will fail to adequately support its true quality requirements.

It is very important to ensure that a system’s quality requirements be properly derived and
allocated to its subsystems and their subsystems. It is also important to assess the quality of
the architectures of the system and its subsystems to ensure that these architectures will suffi-
ciently enable subsystems to meet the derived quality requirements that are allocated to them.

This handbook documents the QUASAR (QUality Assessment of System ARchitectures)
system architecture quality assessment method, which is a practical method for assessing the
quality of system architectures in terms of the degree to which the architectures of their sub-
systems and their sub-subsystems help ensure that they meet the derived quality requirements
allocated to them. This handbook documents the QUASAR method in terms of the

1. challenges the method was developed to meet

CMU/SEI-2006-HB-001 xi

2. objectives of the method as well as its philosophy and assumptions

3. concept of quality cases on which the method has been based

4. method’s major phases and component tasks

5. makeup and responsibilities of the teams that collaborate to perform these tasks

6. resulting work products that the teams produce when performing these tasks

7. lessons learned when performing earlier versions of the QUASAR method while assess-
ing the quality of the architecture of a software-intensive system of systems

8. appendices defining terms, providing reusable checklists, and giving examples of quality
cases

QUASAR is based on the premise that the system architects are responsible for

• knowing and understanding the relevant derived and allocated goals and requirements
that their architectures must help their subsystems fulfill

• creating an appropriate architecture that supports the meeting of these requirements

• properly documenting this architecture so that their architectural decisions and associ-
ated rationales can be readily found

• knowing whether their architectures sufficiently support the requirements that have been
allocated to them

• therefore, being able to make a strong case that their architectures have sufficient quality

Based on a generalization of the idea of a safety case, which is widely used in the safety
community, QUASAR is a structured way for the architecture team to convince the assess-
ment team that the architecture has adequate quality and for the assessment team to determine
the veracity of the architecture team’s claims. For each important quality factor or quality
subfactor, the architecture team makes an associated quality case that their architecture meets
associated derived and allocated requirements. Thus, the architects could present an extensi-
bility case, interoperability case, performance case, reliability case, and safety case during an
assessment. Each such quality case consists of the following information:

• claims that the architecture adequately helps the system achieve its associated quality
goals and meet its quality requirements

• clear and compelling arguments (in terms of cohesive sets of architectural decisions and
their associated rationales) that justify belief in these claims

• sufficient evidence (e.g., official project architecture diagrams, models, and documents
as well as any witnessed demonstrations) to support the architects’ arguments

After discussing the tasks and steps of the method, the teams that perform these tasks, and the
work products that they produce, this handbook includes a list of lessons learned during ac-
tual usage on a very large, complex program. The handbook concludes with appendices con-

xii CMU/SEI-2006-HB-001

taining definitions of quality factors and their subfactors, reusable checklists, and simplified
and sanitized examples of claims, arguments, and evidence that architects might provide dur-
ing assessments.

CMU/SEI-2006-HB-001 xiii

xiv CMU/SEI-2006-HB-001

Abstract

This handbook documents the QUASAR (QUality Assessment of System ARchitectures)
method for assessing the quality of the architecture of a software-intensive system. It begins
by discussing the challenges that are faced when assessing a system’s architecture and out-
lines the development history of the method. The next section of the handbook documents the
concept of quality cases and the claims, arguments, and evidence that compose them. This is
followed by a description of the teams that collaborate to perform QUASAR tasks. Next, in-
dividual tasks and associated steps performed as part of the QUASAR method are docu-
mented. Next, the work products produced by these teams when performing these tasks are
described. Finally, lessons learned during the development and use of the method when as-
sessing the quality of major subsystems during the development of a very large, software-
intensive system of systems are presented. Also provided are appendices that define common
quality factors and subfactors, offer reusable checklists, and give examples of quality cases.
The example quality cases illustrate valid quality goals and requirements that compose
claims, example architecture decisions and associated rationales that compose arguments, and
the types of evidence that architects might provide.

CMU/SEI-2006-HB-001 xv

xvi CMU/SEI-2006-HB-001

1 Introduction

This section of the handbook documents the goals of the QUASAR system architecture qual-
ity assessment method and the challenges that have led to its creation. It also provides a brief
history of the development and verification of the assessment method.

1.1 Intended Audiences
This handbook is intended for anyone who may mandate or take part in a system architecture
quality assessment. This includes, but is not limited to, people who fill one or more of the
following roles:

• System Acquisition (Customer) Personnel
− Customer

Someone who may contractually mandate the performance of such assessments

• Assessment Team Member
− Assessor

Someone who is responsible for technically assessing the quality of the system archi-
tecture against its quality requirements in terms of the architectural information pro-
vided by the architects

• Subject Matter Expert

Someone who acts as an expert during system architecture quality assessments

• System Development Personnel
− Manager

Someone who mandates that development staff perform the assessments, either inter-
nally within the development organization or externally in cooperation with members
of the acquisition organization

− Requirements Engineer
Someone who is a member of the requirements team and who develops and presents
architecturally significant goals and requirements during the subsystem requirements
review part of the assessment

− Architect
Someone who is a member of the architecture team, who develops the system and
subsystem architectures, and who develops and presents the quality cases to the as-
sessment team

CMU/SEI-2006-HB-001 1

− Trainer
Someone who provides training in how to perform system architecture quality as-
sessments

1.2 Goals of this Handbook
This handbook has two primary goals.

1. Enable method use.

This handbook is intended to enable readers to understand and use the QUASAR
method. It clearly documents all of the major components of QUASAR method includ-
ing its phases and their component tasks, the steps making up these tasks, the participat-
ing teams and roles people play as members of these teams, and the work products they
produce. This handbook captures the best practices in system architecture assessment in
a single, convenient source of ready information that will help practitioners prepare for
and perform assessments.

Note that this is a handbook. As such, this document addresses each individual task and
work product in some detail so that the reader need only read sections of the handbook
that are relevant to the work at hand, rather than read the entire document. One unfortu-
nate side effect is that individual subsection completeness results in some redundancy
between highly related subsections, which may prove annoying to anyone attempting to
read the handbook from cover to cover. Readers falling into the latter category can feel
free to skim over any duplicate subsections without fear of missing critical information.

2. Provide justification for use.

Because performing effective system architecture quality assessments requires a signifi-
cant expenditure of resources in terms of effort expended by some of a project’s most
critical staff, the handbook also provides sufficient business and technical reasons to jus-
tify the method’s introduction and use.

1.2.1 Properly Document QUASAR
The primary purpose of this handbook is to properly document the QUASAR method in suf-
ficient detail so that it can be introduced and used on system development programs.

This handbook begins by discussing the challenges that are faced when assessing the quality
of a system’s architecture in terms of the architecture’s support for achieving its allocated
architecturally significant requirements. This handbook also outlines the development and
verification history of the QUASAR method. Section 2 gives an overview of the QUASAR
method including its objectives, philosophy, and the assumptions on which it is built. Section
3 introduces the reader to the concept of quality cases. Section 4 of the handbook documents
the individual tasks and associated steps that are performed as a part of the QUASAR
method. Section 5 documents the three teams that collaborate to perform the QUASAR tasks.
Section 6 describes of the work products that are produced by teams when performing the

2 CMU/SEI-2006-HB-001

assessment tasks. Section 7 lists the lessons that have been learned during the development
and use of the method when assessing the quality of the architectures of major subsystems
during the development of a very large system of systems. Finally, the appendices define
commonly used quality factors and subfactors, provide reusable checklists, and most impor-
tantly, provide the reader with examples of the kinds of information typically composing the
quality cases that architects develop and provide to the assessors.

1.2.2 Justify Use of the QUASAR Method
On many systems development programs, the system architects tend to be considered some
of the most important members of the technical development staff. Not only is the architec-
ture critical to the success of the system, the lead architect often ends up being the technical
leader on small and medium-sized programs who assumes all of the other technical and
managerial responsibilities that the position brings. Similarly, other lower level architects
tend to be the leaders of their subsystem integrated project teams (IPTs). Given that most sys-
tem development programs tend to have a shorter schedule than optimal, the system archi-
tects tend to be extremely busy developing the system architectures, communicating these
architectures with stakeholders, and ensuring the integrity of the architectures as they are
flowed down into the lower level architectures, designs, and implementations. This is why it
is important to understand and remember that architecture assessment brings significant value
and return on investment to the program by significantly lowering program risks to system
quality, development cost, and schedule due to inadequate system architectures. If the system
architects are properly performing their jobs, then they will have properly documented their
architectures as they go. At any point in time, a system architecture quality assessment
should be able to be held with only minimal additional preparation time required of the archi-
tects.

Another goal of this handbook is to clearly show why you should perform an appropriate
number of system architecture quality assessments when developing any software-intensive
system. We are therefore obliged to provide adequate business and technical reasons to justify
its use. Section 2.1 of this handbook begins with a list of QUASAR’s objectives that you can
use to justify expending the cost and valuable resources that using the method entails.

1.3 Challenges
The following are important challenges driving the development of the QUASAR method:

• No system architecture quality assessment methods exist.

Although well-known software architecture assessment methods exist [Clements 02], no
well-known, industry-standard method for evaluating system architectures against their
architecturally significant requirements exists.

• Assessments are not mandated and are considered “scope creep.”

CMU/SEI-2006-HB-001 3

Unfortunately, acquisition organizations typically do not require system architecture
quality assessments in the acquisition contract. Unless the contract clearly specifies the
performance of system architecture quality assessments, the development organization
can legitimately complain that such assessments are out of the scope of the contract and
would therefore require unfunded effort and schedule slippage. The acquisition organi-
zation is then faced with either renegotiating the contract with non-trivial cost and
schedule increases or using their limited bag of carrots (e.g., award fees) and sticks (e.g.,
not approving architecture documents) as a means to force the development organization
to participate in a series of system architecture quality assessments. If the contract is not
renegotiated, there will be extreme pressure to limit the scope of the assessments, poten-
tially to the point where major parts of the system architecture are either not assessed or
inadequately assessed.

• Architecturally significant requirements are poorly specified.

Many projects do not produce sufficient, well-specified architecturally significant re-
quirements to drive the development of the system architecture and therefore, criteria
against which to assess it. This is especially true of quality requirements (e.g., interop-
erability, modifiability, performance, portability, safety, security, usability). Without un-
ambiguously measurable quality requirements, it is difficult to determine if the architec-
ture is of sufficient quality.1

Unless the contract clearly specifies the customer’s architecturally significant require-
ments, it is highly unlikely that adequate architecturally significant subsystem require-
ments will be derived, allocated to individual subsystems, and properly specified. With-
out properly specified architecturally significant requirements, it is highly unlikely that
the architect will have adequately guessed their existence and incorporated them into the
architecture. The architect can then legitimately argue that being forced to support an
unmandated, unscheduled, and unfunded system architecture quality assessment against
unspecified requirements is a clear example of inappropriate scope creep. The result can
be a very unproductive ring of finger pointing.

• System architectures are inadequately documented.

System architects do not typically document their architectures to the degree needed to
perform a proper quality assessment. Specifically, the architectural decisions supporting
the fulfillment of architecturally significant requirements are often not well documented,
their rationales are often missing, and traceability of these decisions back to their quality
requirements is often missing (especially when these requirements themselves are poorly
specified). Also, engineering tradeoff decisions to ensure sufficient support for conflict-

1 Note that the QUASAR method does not include guidance for the actual engineering of quality

goals and requirements. Nevertheless, because of this challenge, QUASAR does include a phase,
one of the primary objectives of which is to ensure that such goals and requirements have been
properly derived and allocated to the subsystems.

4 CMU/SEI-2006-HB-001

ing quality factors (e.g., interoperability and performance vs. security) are rarely ade-
quately documented.

• Architects are inadequately prepared for assessments.

Because system architecture quality assessments are often not mandated in the acquisi-
tion (development) contract, architects rarely allocate adequate resources (e.g., budget
and schedule) for preparing for and participating in the assessments. Because their archi-
tectures are often poorly documented with regard to how their architectures support the
meeting of their allocated quality requirements, architects typically need to produce the
documentation in order to pass the assessments.

• Architecture size and complexity can be overwhelming.

Modern software-intensive systems often consist of a very large hierarchy of large and
complex subsystems, sub-subsystems, and so on. These subsystems may well collabo-
rate in highly sophisticated manners to implement thousands of functional, data, inter-
face and quality requirements. This level of size and complexity can easily overwhelm
the human capacity of individual architects or even teams of architects to comprehend.
Because architectural defects (e.g., mistakes, inconsistencies, and incompleteness) are
inevitable, projects need an adequate number of architectural assessments to identify
these defects and minimize their associated risks.

• Incremental, parallel assessments are necessary.

The large size of many modern systems makes it impossible to assess their architectures
all at once. When using modern iterative, incremental, parallel, and time-boxed devel-
opment cycles, the system architecture also tends to be developed incrementally as its
subsystems are identified and architected. This leads to the existence of multiple subsys-
tem architecture teams working in parallel. Thus, an architecture quality assessment
method usually needs to be able to incrementally assess the system’s architecture as it is
developed, subsystem by subsystem. Given the large number of subsystem assessments
that need to occur, it may well be that multiple simultaneous subsystem assessments
must occur in parallel.

However, the assessment method also needs to be able to be scaled down for assessing
smaller systems where only a single system assessment occurs.

• Results summarization is necessary.

Because the system architecture quality assessment may involve the assessment of the
architectures of many subsystems at multiple tiers within the aggregation hierarchy of
the overall architecture, the architecture assessment method needs to be able to summa-
rize the results of the individual subsystem architecture assessments into an overall as-
sessment of the entire system architecture.

• Assessments must balance architect workload with effectiveness.

System architects and assessors are extremely busy. Thus, the architecture assessment
method should result in an appropriate balance between minimizing their workload and

CMU/SEI-2006-HB-001 5

maximizing assessment effectiveness in terms of identifying architecture defects and
risks in order to improve the quality of the resulting architecture.

• An experienced assessment team is needed.

System architectures are often very complex and highly technical, requiring experience
and training in application domains (e.g., avionics and sensors) and specialty engineer-
ing (e.g., reliability, safety, and security) in order to adequately understand and assess
their technical ramifications to the architecture.

• The assessment method must be repeatable.

The system architecture assessment method typically needs to be repeated to assess the
architectures of many different individual subsystems (or parts of subsystems) as well as
the architecture of the same subsystems as they are iteratively and incrementally devel-
oped over time.

• There is a lack of acquisition guidance regarding contract language.

There is currently a lack of guidance for the acquisition manager regarding appropriate
content to put into the request for proposal (RFP) or contract mandating the assessment
of system architectures against their required quality characteristics.

1.4 History of Development and Use
The QUASAR method was originated during the assessment of the architectures of the major
subsystems of the U.S. Department of Defense (DoD) F-35 Joint Strike Fighter (JSF) aircraft
system of systems.2 Earlier versions of this method were used during a series of assessments
of the architectures of both embedded aircraft systems (e.g., mission systems and vehicle sys-
tems) as well as ground-based systems (e.g., information systems and training systems). As a
result of each individual assessment, substantial lessons were learned and incorporated into
the method.

The QUASAR method has also been significantly based on the experience of the handbook’s
authors as architects and architecture assessors. It is also important to note that the specific
challenges listed that justify the performance of QUASAR assessments as well as the exam-
ple quality cases in the appendix of this handbook are very general, highly sanitized, and not
related to any specific system development program.

2 Because the SEI became involved after contract award, the SEI was neither able to ensure that

system architecture quality assessments were written into the contract, nor ensure a proper early
emphasis on the engineering of the quality requirements on which the QUASAR method is based.
Instead, the use of system architecture quality assessments to address system compliance with a
small number of contractual architecture requirements is largely due to the farsightedness of
members of the acquisition staff responsible for system architecture.

6 CMU/SEI-2006-HB-001

2 QUASAR Overview

When following the QUASAR method, one or more assessment teams assess the quality of a
system’s architecture by means of quality cases, which are developed and presented to the
assessment teams by the system and subsystem architecture teams. The architecture teams
use these quality cases to make the case that their architectures sufficiently support the sys-
tem’s ability to meet its associated quality requirements. Thus, QUASAR enables the archi-
tecture teams to convince the assessment teams that their architectures provide sufficient
support for necessary system quality factors.3

Note that QUASAR is not a means for assessing the architects’ plans and procedures for de-
veloping their system architecture. Although this information tends to naturally become clear
during QUASAR assessments, the QUASAR method neither assesses the quality or appro-
priateness of the system architecture process, nor does it assess whether the architecture
teams are following their architecture methods. In other words, QUASAR assesses neither
process goodness nor method compliance. Instead, QUASAR assesses the actual quality of
the system architecture at one or more specific points in time.4

2.1 Objectives of System Architecture Quality
Assessments

Understanding the many objectives for performing system architecture assessments in gen-
eral and QUASAR assessments in particular, provides a strong business and technical case
for investing the significant resources required to perform them. Because different system
stakeholders can use architecture quality assessments to achieve different objectives, the
reader is invited to select the specific, appropriate objectives from the following list when
arguing for the incorporation of system architecture quality assessments into a project.

3 Quality factors (sometimes called quality attributes and quality characteristics) include afforda-

bility, availability, capacity, configurability, correctness, efficiency, extensibility, interoperability,
maintainability, modifiability, portability, producibility, reliability, reusability, robustness, safety,
scalability, security, stability, sustainability, testability, and usability.

4 The system architecture decomposes the system into its subsystems, their sub-subsystems, and so
on. The system architecture is therefore assessed in terms of the architectures of its subsystems;
the individual subsystem-specific assessments will naturally occur on different dates.

CMU/SEI-2006-HB-001 7

The QUASAR method is used to assess the quality of the architecture of systems and their
subsystems in order to

1. Determine system architecture quality.

The architecture of a system significantly constrains the downstream system design and
implementation as well as the performance of the system integration, testing, and pro-
duction activities. Because the levels of a system’s quality factors are largely enabled (or
made difficult to achieve) by the system’s architecture, the quality of a system’s archi-
tecture greatly influences the quality of the resulting system. Thus, the primary objective
of QUASAR assessments is to determine the quality of the system’s architecture in
terms of the degree to which the architecture enables the system to meet its associated
quality goals and requirements.

2. Determine contract compliance.

Large systems are often developed by means of contracts between an acquisition (cus-
tomer) organization and the development organization (also called a supplier or vendor).
If the customer mandates appropriate contractually binding, quality-relevant require-
ments5 as part of the acquisition contract, then to minimize project risk and exercise ac-
quisition oversight due diligence, the acquisition organization may also mandate a series
of system architecture quality assessments to verify that the development organization’s
complies with these contractual requirements. On such programs, a major objective of
QUASAR assessments is to determine compliance of the system architecture with these
architecturally significant, contractual requirements.

3. Ensure specification of architecturally significant requirements.

The architecturally significant requirements are often very poorly engineered and this is
especially true of the quality requirements. Many are never specified at all, or else they
are incorrectly specified as ambiguous, infeasible, and unverifiable goals such as “the
system shall be reliable” or “the system shall be safe.” Although there are many reasons
why this occurs in practice,6 the result is the same. The architects have to guess at the
required qualities of the architecture without knowing how good is good enough or how
best to perform engineering tradeoffs between conflicting qualities such as security ver-
sus maintainability and testability. It is often not until relatively late in the program, for

5 The primary type of quality-relevant requirements is quality requirements that specify a minimum

acceptable level of some quality factor or quality subfactor. The three other types of quality-
relevant requirements are (1) quality-significant requirements (e.g., functional requirements that
have quality ramifications), (2) quality subsystem requirements (i.e., requirements for a quality
subsystem such as a safety subsystem), and (3) quality constraints (e.g., architecture constraints
that mandate a specific quality architectural mechanism, design constraints that mandate a quality
design decision, or implementation constraints that mandate a quality implementation decision
such as the use of a safe subset of a programming language) [Firesmith 03].

6 The most notable of these is the myth that quality requirements cannot be unambiguously speci-
fied, which itself is due largely to a lack of training in how to properly specify such requirements.

8 CMU/SEI-2006-HB-001

example, during system testing, that addressing this problem becomes unavoidable.
Thus, a major objective of QUASAR assessments is to ensure that the architecture can
be successfully assessed. In order to assess the architecture against its support for the ar-
chitecturally significant quality requirements, these requirements must exist, they must
have the proper characteristics (e.g., be verifiable and unambiguous), and they must
have been properly specified sufficiently early in the development process to drive the
development of the architecture.

Note however that as a system architecture quality assessment method, QUASAR does
not include the requirements engineering tasks during which the architecturally signifi-
cant quality goals and requirements are derived and allocated to the subsystems, the ar-
chitecture of which is being assessed. However, it is critical to ensure that such goals
and requirements do exist so that the architecture support for enabling the system to
achieve these goals and meet these requirements can be assessed. Therefore, QUASAR
does include a Subsystem Requirements Review Phase during which the quality and ma-
turity of these goals and requirements is reviewed so that any problems can be fixed in
time for these quality goals and requirements to properly drive the development of the
architecture and for the architecture to be properly assessable.

4. Determine requirements compliance.

Regardless of the contractual formality of the customer requirements, the development
organization will still need to derive and specify new, more detailed technical require-
ments at the system level. Some of these requirements will (or at least should) be archi-
tecturally significant, and this includes support for quality requirements, functional re-
quirements, data requirements, interface requirements, and architectural constraints.7
When developing software-intensive systems, architecturally significant requirements
will typically be derived and allocated to individual subsystems, lower level sub-
subsystems, and so on. A major objective of QUASAR system architecture assessment is
to determine compliance of the system and subsystem architectures with their derived
and allocated architecturally significant requirements.

5. Determine architecture completeness and maturity.

A software-intensive system must typically be developed using an iterative, incremental,
and parallel development cycle.8 During incremental and iterative development, the ar-

7 Note that the quality requirements are not the only drivers of the system architecture. Major sys-

tem functions equate to cohesive sets of functional requirements, and unlike modern software, sys-
tems still tend to be primarily functionally decomposed. This leads to a natural tension between
the functional and quality requirements that the system architects must resolve. The system and
subsystem architects must also take other business and programmatic drivers into account and per-
form engineering tradeoffs between them and the quality requirements. For example, it must be
feasible to implement the architecture in terms of program budget, schedule, staffing levels, and
staffing experience. Mass-produced systems must also be producible in terms of the production
costs, the development organization’s manufacturing facilities, and supply chain characteristics.

8 Development is parallel if multiple activities (e.g., requirements engineering and architecting or
the engineering of multiple subsystems) are performed concurrently.

CMU/SEI-2006-HB-001 9

chitecture of a system or subsystem must reach a minimum level of completeness and
maturity, respectively, if it is to be properly and completely assessed. Architectural deci-
sions must have been made and properly documented before it becomes possible for the
quality of the resulting architecture to be assessed. Typically, an assessment should be
postponed if the architecture being assessed is not ready for the assessment.

System of Systems

System 1 System 2 System 3 System N

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem N

Segment 1 Segment 2 Segment 3 Segment N

Subsegment
1

Subsegment
2

Subsegment
3

Subsegment
N

Assembly
1

Assembly
2

Assembly
3

Assembly
N

Subassembly 1 Subassembly
2

Subassembly
3

Subassembly
N

HW CI
1

SW CI
N

SW C
1

SW C
N

HW CI
N

SW CI
1

SW Unit
1

SW Unit
N

... ...

Roles

Data CI
1

Manual
Procedures

Facilities

...

...

HW C
1

HW C
N

Part
1

Part
N

...

...

...

...

...

...

...

Data CI
N

...

...

Scope of Architecture
Quality Assessment

Figure 1: Assessment Scope in Terms of Subsystems9

9 In Figure 1, the acronym CI denotes configuration item, while C indicates component. Architec-

tural elements below CI should probably be considered to be part of the design rather than part of
the architecture.

10 CMU/SEI-2006-HB-001

Any non-trivial system is typically decomposed into subsystems, sub-subsystems, and so
forth. As illustrated in Figure 1, this decomposition hierarchy of systems into subsystems
is often organized into a series of horizontal tiers (e.g., system of systems, systems, sub-
systems, and sub-subsystems10 such as segments, subsegment, assemblies, subassem-
blies, and so on) to manage complexity and improve human understandability. Architec-
turally significant requirements will be iteratively and incrementally engineered, with
new, ever-more-detailed requirements being derived and allocated to lower level archi-
tectural elements. The architectures of these subsystems will be iteratively and incre-
mentally developed in parallel with their allocated requirements. This clearly means that
some subsystem architectures will be available for assessment before others, making it
impossible to assess all subsystem architectures simultaneously, unless one waits until
the entire system architecture is completed. However, waiting to the end of system archi-
tecting before assessing the architecture of existing subsystems eliminates the advan-
tages of the early assessment of architecture. Instead, one must incrementally and itera-
tively assess the quality of these subsystem architectures before they become “chiseled
in granite” with too much design and implementation being based on them to make fix-
ing any architectural defects or sub-optimizations practical.

System architecture quality assessments should be performed in a top-down manner, tier
by tier, as part of the natural top-down incremental decomposition of the system archi-
tecture.11 Some subsystem assessments are scheduled before others within given builds
(blocks or increments12), some subsystem assessments are postponed until later builds,
and some subsystem assessments will only be partially performed during one build and
completed during later builds when the remaining parts of the subsystem architecture are
completed. Thus, the growing completeness and maturity of the architecture will have a
significant impact on the scope and schedule of architecture assessments.

As illustrated in Figure 1, the scope of the overall system architecture quality assessment
is determined iteratively and incrementally, based on the decomposition of the system
into lower level tiers of subsystems, sub-subsystems, and so on. This figure shows the

10 Note that the number of tiers and the naming conventions used for the architectural elements at the

different levels of the architecture is relatively arbitrary. From this point on, we will, for the sake
of simplicity, use the term subsystem to mean any lower level architectural element, regardless of
its tier (level) in the system decomposition hierarchy.

11 Whereas performing architecture assessments in an incremental, top-down manner fits well with
modern development cycles, it raises the problem of how to assess the overall highest level archi-
tecture of an entire system or system of systems. Huge heterogeneous systems are often decom-
posed into top-level subsystems that have little architecturally in common with each other and are
developed by unrelated organizations (e.g., subcontractors). Thus, there may be little in the way of
overall architecture integrity, and most of the actual architecture decisions reside at lower tiers of
the architecture.

12 Although the term increment is often used to label a single pass through the development cycle,
use of this term is misleading. Modern development cycles are incremental, but they are also itera-
tive, parallel, and time-boxed.

CMU/SEI-2006-HB-001 11

hypothetical boundary of such a system architecture quality assessment based on the
criticality of the quality of the lower level subsystem architectures to the quality of the
overall architecture, as well as the available resources that can be invested in performing
the lower level assessments. Basing the scope of assessment on the size, complexity, and
criticality of the subsystems to be assessed typically results in a ragged lower boundary
between those subsystems that are assessed and those that are not.

In addition to influencing the scheduling of the assessments, the completeness and ma-
turity of the architecture is important for measuring project progress, especially when
developing software-intensive systems using an iterative and incremental development
cycle. Because architecture completeness and maturity is not indicated by the comple-
tion of a single architecture document, management and customer oversight require an
objective and independent assessment of architecture completeness and maturity. To
provide management with independent and objective metrics describing the develop-
ment status of the system and subsystem architectures, it is often important to independ-
ently assess the status of these architectures.

Because a minimal level of architectural maturity13 is needed before a system architec-
ture quality assessment can be successfully performed, stakeholders can ask the follow-
ing questions when scheduling assessments:

− Requirements engineered?
Have the relevant architecturally significant quality requirements been properly de-
rived and allocated to the subsystems, the architecture of which is to be assessed?

− Architecture exists?
Does all of the system/subsystem architecture within the scope of the assessment ex-
ist? Will all of the architectural decisions have been made by the time that the archi-
tecture is to be assessed?

− Architecture properly documented?
Is this architecture adequately and properly documented in terms of official project
architectural diagrams, models, and documents? By “official,” we mean formally
planned project documentation under configuration control, rather than informal,
temporary documentation (e.g., slides developed just for the sake of the assessment).

− Milestones?
Will the architecture to be assessed be sufficiently complete so that the assessment
results can support a major programmatic milestone such as Preliminary Design Re-
views (PDRs) and Critical Design Reviews (CDRs)?

In light of these questions, an important secondary objective of the QUASAR assess-
ment is to perform an objective, independent assessment of the completeness and matur-
ity of the system architecture in terms of the completeness and maturity of its associated
subsystem architectures so that the results can be reported to stakeholders.

13 An architecture can be considered “mature” when its rate of iteration (change) slows to the point

where it becomes relatively stable.

12 CMU/SEI-2006-HB-001

6. Determine architecture consistency and integrity.

The development of a software-intensive system involves the successive decomposition
of the system into subsystems, sub-subsystems, and so on. Unfortunately, because of
schedule constraints and other factors, it is difficult or impossible to develop a system’s
architecture in a truly top-down manner. Subsystem architectures are developed in paral-
lel with each other as well as in parallel with the architecture of their higher level parent
subsystems. Therefore, inconsistencies tend to develop between subsystem architectures,
creating a danger that architectural integrity will be lost.

Architectures are consistent to the extent that they incorporate the same architectural de-
cisions to solve similar problems in similar contexts. They tend to incorporate the same
architectural styles, patterns, and mechanisms. This leads members of the architecture
and assessment teams to ask the following questions concerning architecture consis-
tency:14

− Consistent vertically?
Are the architectures of subsystems consistent with the architectures of related sub-
systems at both higher levels and lower levels in the overall system architecture’s de-
composition hierarchy?

− Consistent horizontally?
Are the architectures of related (e.g., interoperating) subsystems at the same level of
the tier structure consistent?

− Consistent across specialty architectures?
Is there consistency among the various types of specialty architectures such as the
hardware architecture, software architecture, database architecture, safety architec-
ture, and security architecture?

− Consistent support for quality factors?
Are the architectural decisions made to support the various types of quality require-
ments consistent across subsystems? Are the architecture decisions supporting indi-
vidual types of quality requirements consistent with the types of engineering trade-
offs that must be made between competing quality factors (e.g., increasing
performance may decrease maintainability and increasing security may decrease us-
ability)?

− Consistent across development groups?
Are architectures consistent across multiple
− corporations (e.g., prime contractor and subcontractors)?
− organizations and teams (e.g., subsystem development teams) within a single cor-

poration?
− groups at distributed development locations?

14 Two architectures are consistent to the extent that they incorporate the same architectural deci-

sions to solve similar problems in similar contexts. Consistent architectures tend to incorporate the
same architectural styles, patterns, and mechanisms.

CMU/SEI-2006-HB-001 13

QUASAR assessments can be used to determine the consistency of the subsystem archi-
tectures of an overall system’s architecture. As a way of identifying a lack of architec-
tural consistency, QUASAR assessments can help the system architects enforce architec-
tural integrity down through the system architecture’s aggregation hierarchy of
subsystems.

7. Help architects develop, document, and improve their architectures.

Developing a good quality architecture that meets all of the architecturally significant
requirements is a very difficult task, especially given the size and complexity of many of
today’s systems and especially systems of systems. The architecture of modern systems
is huge, consisting of many subsystems, sub-subsystems, and so on, that must collabo-
rate in complex ways to meet huge numbers of stringent requirements. The behaviors of
such systems are also highly complex. By ensuring the timely existence of architectur-
ally significant requirements and by helping to ensure that the architect’s focus remains
on achieving these requirements, the architects are more likely to correctly make and
properly document the associated architectural decisions. A major objective of
QUASAR assessments is therefore to help the architects create and document their ar-
chitectures and properly prepare for the associated assessments. The architects can then
identify the architectural defects and weaknesses found during the assessments and im-
prove their architectures moving forward.15

8. Identify architecture defects early.

The quality of a system’s architecture is critical because any defects of either commis-
sion (poor architectural decisions) or omission (missing architectural decisions) in the
architecture will flow down into lower level subsystem architectures as well as the re-
sulting designs and implementation. Thus, the assessment should begin to verify the ar-
chitecture’s support for architecturally significant quality requirements early, prior to
significant design so that any areas of non-compliance can be corrected with an accept-
able negative impact on the cost and schedule of the project. In other words, the assess-
ment should identify architecture defects and risks during architecture development as
opposed to after the system has been implemented and is under test when architectural
defects are difficult and costly to repair. A major objective of QUASAR assessments is
thus to identify architectural (strategic) defects early in the development cycle and be-
fore they are propagated throughout they system, resulting in many design and imple-
mentation (tactical) defects.

9. Manage architectural risks.

Because the architecture of a software-intensive system is large and complex, it will be
practically impossible for the system architects to get everything right at the start of the
architecture development. Combining the probability of architectural defects with the se-
rious harm that they typically cause yields a significant system architecture risk. Thus, a

15 Defects and weaknesses are found by the architects when preparing for the assessments and by

assessors during the actual assessment. Both lead to iterative improvement of the architecture.

14 CMU/SEI-2006-HB-001

major objective of QUASAR assessments is to help lower these architectural risks to an
acceptable level by lowering the probability of architectural defects and increasing the
probability that the remaining defects are found sufficiently early in the development
cycle so that the can be fixed and their negative consequences either eliminated or miti-
gated. Major subordinate QUASAR objectives are to
− identify major architectural risks, as well as strengths, to the extent practical given

the limited duration and depth of the assessments
− make an initial estimate of the criticality (magnitude of negative impact) and prob-

ability of occurrence of the architectural risks that are identified
− identify system architecture risks early in the program when they can be effectively

mitigated
− identify quality requirements that are not adequately supported by the architecture so

that they can be tracked

10. Provide stakeholder visibility into the architecture.

A system’s architecture has many stakeholders that need timely visibility into the archi-
tecture. Customer and user organizations want visibility into the architecture to ensure
that the system they are acquiring will meet the architecturally significant requirements
and possess the necessary qualities. The requirements team wants visibility to ensure
that the architecturally significant requirements they engineered will be met by the re-
sulting system. The designers, implementers, and testers want confidence that the archi-
tecture that drives their work has sufficient quality and will not need to be significantly
altered, thereby invalidating their designs, implementations, and integration tests. Man-
agers want to verify that the architecture can be implemented within budget and sched-
ule constraints. A properly performed architecture assessment provides either direct visi-
bility into the architecture, if the stakeholders are part of the assessment team, or provide
them confidence that they can rely on the architectural models and documents, if they
are not part of the assessment team.

Under current DoD acquisition practice, the defense contractor is given either capability
or performance-based requirements and is responsible for the development and delivery
of a system that meets these requirements. Typically, the defense contractor has little ob-
ligation to deliver specific architecture documentation to the program management of-
fice (PMO) early in the development process. The PMO also needs visibility into the
technical architecture of the system; a series of system architecture assessments is one
way for engineering personnel in the PMO to obtain that visibility and leverage.

11. Provide acquisition oversight of the architecture.

If the acquiring organization is funding the development of the system, then it assumes
acquisition oversight responsibilities. It is important that the acquirer ensures that the
system is being developed appropriately. This includes ensuring that the system architec-
ture is being properly developed by assessing and approving development work products
such as architectural models and documentation. A system architecture assessment is an
appropriate method for doing so.

CMU/SEI-2006-HB-001 15

A system architecture assessment is a technical evaluation of the architecture’s quality
and as such should not typically be part of major milestone reviews, which are at a
higher managerial level. Milestone reviews are often used by the defense contractor to
convince the PMO that they have achieved a specific milestone, thereby justifying the
associated payment of funds. System architecture quality assessments should instead be
performed incrementally and iteratively prior to the associated milestone reviews, which
need only summarize the results of the system architecture assessments.

This being said, it is critical that acquisition personnel understand the quality and com-
pleteness of the system architecture as well as any significant architectural risks at the
major milestone reviews such as PDRs or CDRs. Thus, the system architecture quality
assessment becomes the basis for the PMO’s approval of the architecture and system at
the milestone reviews.

If system architecture quality assessments are to be used to technically prepare for major
milestone reviews, then this should be included in the request for proposal (RFP) and
contract.

12. Develop consensus.

The assessment should ensure that a consensus between the teams is developed regard-
ing the meaning of the quality factors and the associated quality requirements that the
architecture being assessed must fulfill.16

13. Ensure usability of architecture documentation.

The assessment should help ensure that the architecture’s documentation is usable by
stakeholders like acquisition personnel, users, developers, testers, safety and security
engineers, and maintainers.
− Is the system architecture documented in a format that is usable by all the relevant

stakeholders?
− Is the system architecture documentation organized in a way that allows stakeholders

to locate information of interest?
− Does the system architecture documentation provide adequate detail without over-

whelming readers?17
The objectives of system architecture quality assessments vary depending on the organization
that is responsible for performing the assessment. Assessments, for example, may be per-
formed by the

• architecture team, as part of a team-internal technical assessment

• development organization, as part of an organizational-internal quality assessment

• customer organization, as part of its independent oversight or verification duties

16 If consensus cannot be reached, an action item must be created and tracked to resolution.

17 Although this is difficult to achieve in practice, it nevertheless should be a goal to be strived for.

16 CMU/SEI-2006-HB-001

2.2 Philosophy of Architecture Assessment
• Quality requirements drive the architecture.

An architecture is insufficient if it only supports the performance of its allocated func-
tional requirements. Rather, the quality of the architecture (and acceptability of its sys-
tems) is largely based on how well the architecture also supports its allocated quality re-
quirements. This is true whether or not these quality requirements have been explicitly
derived and allocated to the architecture. Thus, it is not just what the architecture enables
a system to do, but rather how well it enables the system to do it (i.e., how well it sup-
ports its allocated “-ilities”). For example
− The architecture may be layered and modular to support the meeting of maintainabil-

ity requirements.
− The architecture may include a commercial off-the-shelf (COTS) real-time operating

system and deterministic scheduling to support the meeting of performance require-
ments.

− The architecture may include redundant hardware to support the meeting of availabil-
ity and reliability requirements.

• The safety cases approach can be generalized for quality cases.

The safety case approach developed within the safety community can be generalized and
reused for other quality factors. Specifically, it forms the basis for an architecture as-
sessment method for verifying the sufficiency of architectural support for other types of
quality requirements.

• Architects make their cases to assessors.

The architects are responsible for successfully making their case to the assessors that
their architecture sufficiently supports achieving the architecturally significant quality
requirements. The assessment team should not have to work hard to determine what the
architects have done. The assessment team’s liaison to the architecture team should not
have to make the architecture team’s arguments and identify and provide their evidence
for them.

• Arguments must be clear and compelling.

To pass the assessments, the architects must convince the assessors that the architecture
adequately supports the system’s meeting its quality requirements. Therefore, the archi-
tects’ arguments (i.e., presentation and documentation of architectural decisions and as-
sociated rationales) must be clear and compelling.

• Evidence must be credible.

Unless the architects provide proper evidence, their case that the architecture adequately
supports its derived and allocated quality requirements is not credible. Relying merely
on the verbal assurances of the architects boils down to little more than the “trust me”
argument. The cases must be based on real evidence; the evidence is not real unless it is
in the project’s official architecture documentation (e.g., under configuration control).

CMU/SEI-2006-HB-001 17

Verbal discussions and “quick and dirty” PowerPoint presentations developed specifi-
cally for the assessment are not acceptable evidence, although they can be quite useful in
helping to determine how well the architecture team understands its architecture.

• Assessors probe architects’ cases.

Although the architects are responsible for successfully making their quality cases to the
assessors, it is not appropriate to rely on them to make perfect quality cases. After all, it
is not uncommon for the architects to be overly confident that their architectural deci-
sions are adequate to ensure that their system and subsystem architectures sufficiently
support the ability of the system and subsystems to meet the derived and allocated qual-
ity requirements. Architects also naturally tend to present their best arguments and
downplay any known weaknesses in their architectures.

Therefore, assessors should not be a passive audience during the architects’ presentation
of quality cases. For one thing, the assessors are responsible for properly preparing to
hear the architects’ quality cases; they must learn about the architectures by reading the
architects’ preparatory materials. More importantly, the assessors are responsible for us-
ing this understanding to actively probe the architects’ quality cases for any potential
weaknesses and risks. Note that to be able to do these two things, the assessment team
must contain assessors who are skilled system architects with backgrounds in either
relevant specialty engineering areas (e.g., reliability engineering, safety, security) or
relevant application domains (e.g., communications, power supply, propulsion, sensors).

2.3 Assumptions
The QUASAR method is based on the following assumptions about the system that is being
architected:

1. The system is large and incrementally and iteratively developed.

Assumptions: The system is very large and complex, requiring it to be iteratively and
incrementally developed.

Consequences:
a. The system has a large number of architecturally significant derived requirements

that have been allocated to multiple levels within the system architecture.
b. The system’s architecture is very large and complex.
c. Both the architecturally significant requirements18 and the associated architecture

are being developed in an incremental and iterative manner.

18 Even if the requirements are “officially” being engineered using a waterfall approach, in practice

they will actually be engineered in an incremental and iterative manner. Regardless of whether or
not the requirements are being developed incrementally and iteratively, a software-intensive sys-
tem will almost certainly be architected in this manner. Typically, as the system is decomposed
into subsystems and sub-subsystems, these subsystems will be architected in a top-down manner.

18 CMU/SEI-2006-HB-001

d. It is impractical to adequately assess the entire system architecture all in one step;
architecture assessments must also be performed in an incremental and iterative
manner.

2. Quality requirements are important architecture drivers.

Observations: In practice, system requirements engineering tends to concentrate on
functional requirements. Unlike software which currently tends to be decomposed using
object-oriented design methods, systems tend to be functionally decomposed into sub-
systems and sub-subsystems that are functionally cohesive. Quality requirements (e.g.,
availability, capacity, efficiency, interoperability, modifiability, performance, portability,
producibility, reliability, reusability, robustness, safety, scalability, security, testability,
and usability) tend to be poorly and incompletely engineered. Quality requirements
greatly influence the quality, acceptability, and architecture of the system.

Consequences:
a. Because functional requirements and the functional decomposition of systems into

functionally cohesive subsystems are emphasized, system architectures tend to be
driven by and map reasonably well to the meeting of functional requirements.

b. In practice, the risk that systems will not meet their quality requirements is larger
than the risk that they will not meet their functional requirements.

c. Because quality requirements are primary drivers of the architecture, the architec-
ture assessment method should concentrate on assessing whether or not the archi-
tecture sufficiently helps the system and its subsystems meet their derived and allo-
cated quality requirements.

3. Quality requirements are often missing or of poor quality.

Observations: In practice, many architecturally significant quality needs are never
specified as quality requirements and many of those that are specified are poorly speci-
fied. They tend to be vague goals such as “the system shall have high availability” or
“the subsystem shall highly interoperable” rather than actual requirements that are com-
plete, consistent, feasible, unambiguous, and verifiable.

Consequences:
a. The maturity and quality of the quality requirements must be reviewed sufficiently

early to enable them to be corrected in time for them to drive the architecture and to
enable the architecture to be properly assessed.

b. Quality goals and requirements are often pushed down “as is” to lower level sub-
systems without being properly derived to be more detailed and specific.

CMU/SEI-2006-HB-001 19

20 CMU/SEI-2006-HB-001

3 Quality Cases

Each subsystem architecture team is responsible for convincing the assessment team that
their subsystem architecture adequately supports the subsystem’s ability to fulfill the derived
quality goals and meets the derived quality requirements that have been allocated to the sub-
system. After all, who else better knows the

• quality goals and quality requirements that drove their architectural decisions

• architectural decisions (e.g., selection of architectural patterns and use of architectural
mechanisms) they made and why they made them

• where in the architectural documentation they explicitly document decisions and associ-
ated rationales

In other words, the members of the subsystem architecture team

• make claims to the assessment team that the subsystem architecture adequately supports
the subsystem’s ability to
− fulfill the derived quality goals
− meet the derived quality requirements

• present clear and compelling arguments to the assessment team as to why the assessment
team should believe that
− they made certain architectural decisions
− they made appropriate decisions
− the combination of these decisions is adequate to justify belief in their claims

• provide sufficient evidence to the assessment team supporting their arguments
In other words, trustworthy evidence that
− they actually made the architectural decisions that they argue they did
− these were appropriate and sufficient decisions to justify belief in the subsystem ar-

chitecture team’s claims
In the QUASAR method, the way for a subsystem architecture team to make their case to the
assessment team is to produce a set of quality cases and formally present them to the assess-
ment team. Thus, the foundation on which the QUASAR method is based is the concept of a
quality case, which is a generalization of the safety case approach developed within the safety
community.

CMU/SEI-2006-HB-001 21

3.1 Definition of Quality Cases
As illustrated in Figure 2, quality factors (e.g., interoperability, performance, safety, or secu-
rity) define a single type of quality of a system or subsystem. A quality factor is typically de-
composed into one or more quality subfactors. For example, the quality subfactors of per-
formance are jitter, latency, response time, schedulability, and throughput. Because a single
quality case is specific to a quality factor or one of its quality subfactors, quality cases can be
classified as interoperability cases, performance cases, safety cases, security cases, and so
on.19 A quality case consists of a set of related

• Claims

Claims are the developers’ assertions that the system or subsystem adequately achieves
its allocated quality goals and meets its allocated requirements.

• Arguments

Arguments are the developers’ clear and compelling reasons that justify belief in the as-
sociated claims (i.e., reasons why the assessors should believe that the system or subsys-
tem adequately meets its allocated goals and requirements).

• Evidence

Evidence is sufficient credible documentation (or witnessed demonstrations) that sup-
ports the developers’ arguments.

Quality Case

Claim Argument Evidence
justifies belief in supports

makes the case for the quality of a
System

Subsystem

Quality Factor

Quality Subfactor

is specific to a

defines a type of quality of a

defines a part of a type of quality of a

Figure 2: Structure of Quality Cases

Typically, a quality case is constructed near the end of development and its arguments and
evidence address all major project disciplines (requirements, architecture, design, implemen-
tation, integration, and testing). This allows the quality case to make a strong case for the

19 Note that this is the structure of a general quality case and is not restricted to an architecture-level

quality case.

22 CMU/SEI-2006-HB-001

quality of the completed system or one of its completed subsystems. However, such a com-
plete quality case would be constructed and presented much too late in the development cycle
to be used as the foundation for an architecture quality assessment.

Therefore, the QUASAR method uses architecture quality cases that are restricted to archi-
tectural information. As illustrated in Figure 3, an architecture quality case consists of

• Architectural Claims

Architectural claims are the architects’ assertions that the system/subsystem architecture
sufficiently supports the system/subsystem ability to achieve its allocated quality goals
and meet its allocated requirements.

• Architectural Arguments

Architectural arguments are the subsystem architects’ clear and compelling reasons that
justify belief in their claims. These are typically the architects’ architectural decisions
(e.g., use of appropriate architectural components, mechanisms, or patterns) that com-
pose the reasons why the assessors should believe that the architecture adequately sup-
ports the fulfillment of the derived quality requirements that have been allocated to the
subsystem.

• Architectural Evidence

Architectural evidence is sufficient credible20 evidence to support the architects’ argu-
ments (e.g., adequate official project architecture diagrams, architecture models, archi-
tecture documents, and executable architectural prototypes).

Quality Case

Claim Argument Evidence
justifies belief in supports

Architectural
Quality Case

makes the case for the quality of a
System

Subsystem

Architecture

has an

makes the case for the quality of an

Architectural
Argument

Architectural
Evidence

supportsArchitectural
Claim

justifies belief in

Figure 3: Structure of Architectural Quality Cases

20 To be credible, evidence should be official, relevant, correct, current, and under configuration con-

trol.

CMU/SEI-2006-HB-001 23

3.1.1 Claims
In a quality case, a claim is defined as an assertion made by the development team to the as-
sessment team that the system or subsystem either adequately achieves one or more related
quality goals or meets a set of one or more associated quality-related requirements that have
been allocated to it.

The following are important consequences of this definition:

• A claim is not just any assertion. A claim is related to one or more related quality goals
or to an associated set of one or more quality-related requirements. A claim is therefore
related to a specific quality factor. One claim may be about interoperability, a second
claim may be about performance, and a third claim may be about safety. If a relevant
quality factor has important quality subfactors, then there may also be claims about
them. For example, a performance claim may be decomposed into claims about response
time and throughput. The quality factor related claim “subsystem X will have high per-
formance” can be decomposed into the quality subfactor claims “subsystem X will ex-
hibit a rapid response time” and “subsystem X will have a high throughput.” As a natural
part of requirements engineering, such high-level goals should be engineered into de-
rived performance requirements such as “under normal operating conditions, subsystem
X shall respond to stimulus Y within Z milliseconds” and “when in disabled mode A,
subsystem B shall on average complete at least C transactions of type D per second.”

• During a quality assessment, a development team makes a series of claims to an assess-
ment team with the goal of convincing the assessment team of the validity their claims
concerning the quality of the system or subsystem. The development team therefore at-
tempts to justify the assessors’ belief in these claims by using clear and compelling ar-
guments based on supporting evidence.

• A claim can be made either about the entire system or about one of its subsystems. How-
ever, more claims are naturally made about subsystems than the overall system because
there are more subsystems.

• A claim can be made about either achieving a quality goal or meeting a set of associated
quality-related requirements. Ensuring that the system or subsystem meets a cohesive set
of consistent, feasible, unambiguous, and verifiable requirements is almost always much
more important than the achievement of more general goals.

Architectural quality cases contain system or subsystem architectural claims rather than the
more general system or subsystem claims. These architectural claims are either about the ar-
chitecture of a system or about the architecture of one of its subsystems. In an architectural
quality case, an architectural claim is defined as an assertion made by an architecture team to
an architecture assessment team that the system or subsystem’s architecture adequately helps
the system or subsystem either achieve one or more related quality goals or meet a set of one
or more associated quality requirements that have been allocated to it.

24 CMU/SEI-2006-HB-001

The preceding definition of an architectural claim implies that

• The architectural claim is limited. Just because a system or subsystem has an adequate
architecture does not mean that the system or subsystem will achieve its quality goals or
will meet all of its associated quality requirements after it is implemented. Defects in de-
sign, implementation, and integration cannot be overcome by the architecture, no matter
high its quality. Having a good architecture is a necessary but insufficient condition for
achieving overall quality goals and meeting requirements.

• An architectural claim can be made either about the system-level architecture or about
the architecture of one of its subsystems. As before, more claims are made about subsys-
tem architectures than the overall system architecture because there are more subsys-
tems.

• An architectural claim can be made about either achieving a quality goal or meeting a
set of related quality requirements.

As illustrated in Figure 4, there are many different kinds of architectural claims that the sys-
tem or subsystem architecture teams could make. First of all, there are many different kinds
of quality factors and quality subfactors that might be important drivers of the architecture.
Secondly, claims can be about achieving quality goals or meeting quality-related require-
ments. The claims about achieving quality goals can be further subdivided into goals related
to the overall quality factor or to one of its quality subfactors. Quality-related requirements
can also be about meeting minimum mandatory levels of quality factors and subfactors, but
they can also be about other related requirements. Unlike quality requirements, quality-
significant requirements are any normal functional, data, or interface requirements with qual-
ity ramifications. Quality subsystem requirements are requirements for any subsystem, the
sole purpose of which is to achieve that quality. Thus, all of the requirements for a fire detec-
tion and suppression subsystem are quality subsystem requirements. Finally, constraints
mandating certain quality mechanisms are called quality constraints.

CMU/SEI-2006-HB-001 25

Quality
Goal

Quality-Related
Requirement

claims the architecture
adequately helps the
system achieve its

Quality
Factor
Goal

Quality
Subfactor

Goal

Quality Goal
Claim

Quality
Requirement

Claim

claims the architecture
adequately helps the

system meet its

ensures
achieving

Quality Factor
Requirement

(e.g., Performance)

Quality Subfactor
Requirement

(e.g., through-put)

Quality Subsystem
Requirement

(e.g., safety subsystem)

Architectural
Quality Case

Architectural
Claim

Architectural
Argument

Architectural
Evidence

justifies belief in supports

Quality Constraint
(e.g., design constraint)

Quality
Requirement

Quality-Significant
Requirement

Figure 4: Types of Architectural Claims

Consider an automated people mover (APM) system decomposed into a taxi subsystem (i.e.,
the taxis), a guideway21 subsystem (i.e., the concrete guideways on which the taxis drive), a
taxi station subsystem, and a central control subsystem. The following are examples of the
different kinds of safety claims that the architects might make when constructing its safety
cases:

21 Guideway is the industry standard term for the path (e.g., concrete road, monorail, or train tracks)

along which an APM travels.

26 CMU/SEI-2006-HB-001

1. Safety Goal Claims
a. Safety Factor Goals

− System Is Safe to Use and Operate
The architecture of the automated taxi system adequately supports the system
achieving the following safety factor goal: “The automated taxi system will be
safe to use and operate.”

− Taxis Are Safe to Use
The architecture of the automated taxi subsystem adequately supports the subsys-
tem achieving the following safety factor goal: “The automated taxi subsystem
will be safe for its passengers to use.”

b. Safety Subfactor Goals
− System Prevents All Accidents

The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following harm prevention safety subfactor goal: “The automated taxi
subsystem will help it to avoid injuring its passengers.”

− System Detects All Guideway Hazards
The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following hazard detection safety subfactor goal: “The automated taxi
subsystem shall detect all guideway hazards (e.g., stalled vehicle or unlocked
switch).”

− System Reacts to All Accidents
The architecture of the automated taxi subsystem adequately supports its achiev-
ing the following accident reaction safety subfactor goal: “The automated taxi
subsystem shall properly react to all detected accidents.”

2. Safety-Related Requirements Claims
a. Safety Requirements

− Taxi Shall Avoid Rear-Ending Other Taxis
The architecture of the automated taxi subsystem adequately supports its meeting
the following safety requirement: “A taxi shall not rear-end a taxi in front of it
more than twice a year, whereby rear-ending means a collision with a relative
impact speed of 1 kilometer per hour or more.”

− Taxi Shall Detect Collisions
The architecture of the automated taxi subsystem adequately supports its meeting
the following safety requirement: “At least 99.9% of the time, a taxi shall detect
if it collides with another taxi with a relative speed of more than 2 kilometers per
hour.”

− Taxi Shall Report Collisions
The architecture of the automated taxi subsystem adequately supports its meeting
the following safety requirement: “At least 99.9% of the time upon detecting a
collision, the automated taxi subsystem shall notify the command subsystem
within 5 seconds that it has been involved in the collision.”

b. Safety-Significant Requirements
− Taxis Shall Know Velocity

The architecture of the automated taxi sensor sub-subsystem (SS) adequately
supports its meeting the following safety-significant requirement: “The auto-
mated taxi SS shall determine the velocity of the taxi relative to the guideway

CMU/SEI-2006-HB-001 27

with an accuracy of 0.2 kilometers per hour and a precision of within ± 0.1 me-
ters per second.”

− Taxis Detect Headway
The architecture of the automated taxi SS adequately supports its meeting the fol-
lowing safety-significant requirement: “The automated taxi SS shall detect if the
next taxi in front of it gets within its headway (i.e., the safe stopping distance) [as
indicated by table X].”

− Taxis Obey Speed Limit
The architecture of the automated taxi power braking subsystem (PBS) ade-
quately supports its meeting the following safety-significant requirement: “Sub-
ject to guideway speed limits, the PBS shall be able to accelerate the taxi up to a
maximum forward velocity of 80 kilometers per hour.”

c. Safety Subsystem Requirements
− Smoke Detector Sensitivity

The architecture of the automated taxi fire detection and suppression sub-
subsystem (FDSS) adequately supports its meeting the following safety subsys-
tem requirement: “At least 99.9% of the time, the FDSS shall detect smoke parti-
cles larger than 0.01 micrometers in concentrations more than 10,000 particles
per cubic centimeter.”

− Smoke Detection Reliability
The architecture of the FDSS adequately supports its meeting the following
safety subsystem requirement: “The FDSS shall have a reliability of more than
99.9%.”

d. Safety Constraints
− Seat Belts

The architecture of the automated taxi subsystem incorporates the following
safety constraint: “The automated taxi subsystem shall provide standard COTS-
based automotive seat belts for all passengers.

− Safety Glass
The architecture of the automated taxi subsystem incorporates the following
safety constraint: “The automated taxi subsystem shall use COTS safety glass for
all windows.”

3.1.2 Arguments
In a quality case, an argument is defined as a reason given by a development team to an as-
sessment team that justifies belief in a claim. Therefore in an architecture quality case, an
architectural argument is defined a reason given by an architecture team to an architecture
assessment team that justifies belief in an architectural claim. The following are important
consequences of this definition:

• Arguments should be clear and compelling if they are going to convince the assessment
team that belief in the claims is justified.

• Arguments should be backed up by sufficient, legitimate evidence.

28 CMU/SEI-2006-HB-001

• As illustrated in Figure 5, arguments are a combination of the architects’
− architectural decisions such as the

− use of appropriate architectural pattern, style, or mechanism
− incorporation of a specific architectural component
− use of a specific general way architectural components should collaborate to meet

the allocated quality goals and quality requirements
− rationales for why the architectural decisions are appropriate and adequate

Architectural
Quality Case

Architectural
Claim

Architectural
Argument

Architectural
Evidence

justifies belief in supports

Quality-Related
Requirement

Architectural Decision
(e.g., redundant HW) Rationale

rationalizes
choice ofQuality Requirement

Claim

claims the
architecture
adequately
helps the

system meet its helps system or
subsystem meet its

allocated

justifies
belief in

Figure 5: Structure of Architectural Arguments

The following are examples of the different safety arguments that architects might make
when building safety cases for the architecture of an APM:

1. Arguments for Meeting Safety Requirements
a. Architecture Decision: Redundant Headway Sensors
 The automated taxi subsystem (ATS) incorporates redundant ultrasound and laser

sensors for determining if the automated taxi’s headway is less than its current safe
stopping distance.22
Rationale:
These sensors can be used to ensure that the taxi maintains an adequate headway so
that it can apply brakes to avoid colliding with the taxi in front of it.

22 Headway is the distance between an APM vehicle and the vehicle in front of it on the same

guideway. Headway is used to determine the minimum safe braking distance to be kept between
adjacent vehicles. A guideway is the concrete road, railroad tracks, or monorail on which vehicles
travel.

CMU/SEI-2006-HB-001 29

b. Architecture Decision: Radio Transmitter
 The ATS incorporates a COTS very high frequency (VHF) radio transmitter and re-

ceiver. Specifically, it incorporates model X radio from vendor Y.
Rationale:
The radio will be used to notify the central control subsystem of accidents and haz-
ards. The selection was based on an industry trade-study, an analysis of vendor-
supplied technical documentation, and a test of prototypes across the range of the
taxis.

2. Arguments for Meeting Safety-Significant Requirements
a. Functional Requirement: Close Taxi Door

− Architecture Decision: Door Resistance Sensor
The door subsystem (DS) of the ATS incorporates a door resistance sensor on the
door motor.
Rationale:
The door resistance sensor enables the automated taxi subsystem to determine if
it its doors are closing on a passenger if a maximum safe torque value is ex-
ceeded. This enables the door subsystem to reopen the doors and automated taxi
subsystem to know not to move when the door is jammed open.

− Architecture Decision: Maximum Door Motor Torque
The DS of the ATS incorporates a COTS door motor that has a safe maximum
torque rating.
Rationale:
The door motor is not strong enough to seriously crush a passenger.

− Architecture Decision: Door Lock
The DS of the ATS incorporates a door lock.
Rationale:
The door lock can be used to ensure that the door remains closed while the taxi is
moving.

− Architecture Decision: Door Lock Sensor
The DS of the ATS incorporates a door lock sensor.
Rationale:
The door lock sensor can be used to ensure that the door remains locked while
the taxi is moving.

− Architecture Decision: Speed Sensor
The power braking subsystem (PBS) of the ATS incorporates a speed sensor.
Rationale:
The speed sensor enables the ATS to ensure that the taxi does not move until the
door is closed and locked.

− Architecture Decision: Maximum Door Closure Distance
The DS of the ATS incorporates a door stop.
Rationale:
The door stop ensures that a 1.5 inch gap remains when the door is closed and
locked, thereby ensuring that the door does not crush passengers’ fingers.

3. Arguments for Meeting Safety Subsystem Requirements
a. Safety Subsystem: Fire Detection and Control Subsystem

30 CMU/SEI-2006-HB-001

− Architecture Decision: Smoke Detector
The fire detection and control subsystem (FDCS) incorporates a COTS smoke
detector in the PBS.
Rationale:
An overheated electric motor or brake can generate smoke before catching fire.

− Architecture Decision: Heat Sensor
The FDCS incorporates a COTS heat sensor in the PBS.
Rationale:
The high temperature of an overheated electric motor or brake can be detected
before they catch fire.

− Architecture Decision: Automated Fire Extinguisher
The FDCS incorporates a COTS fire extinguisher in the PBS.
Rationale:
The high temperature of an overheated electric motor or brake can be detected
before they catch fire.

− Architecture Decision: Taxi Speed Override
The FDCS stops the automated taxi door in case of fire.
Rationale:
Stopping the taxi enables passengers to exit the taxi onto the guideway footpath.

− Architecture Decision: Door Lock Override
The FDCS unlocks the automated taxi door lock in case of fire.
Rationale:
Unlocking the taxi door enables passengers to exit the taxi onto the guideway
footpath.

4. Arguments for Meeting Safety Constraints
a. Architecture Decision: Seat Belts

The ATS provides standard COTS automotive seat belts for all passengers.
Rationale:
This decision fulfills the seat belts architecture constraint. It can also protect pas-
sengers from injury during collision. Using standard COTS automotive seat belts
minimizes price while maintaining quality.

b. Architecture Decision: Safety Glass
The ATS incorporates standard COTS safety glass for all windows.
Rationale:
This decision fulfills the safety glass architecture constraint. It can also protect pas-
sengers from injury during collision. Using standard COTS safety glass minimizes
price while maintaining quality.

3.1.3 Evidence
In a quality case, evidence is official factual information that clearly proves the truth of the
architects’ arguments. It is what supports their claims that a system or subsystem achieves
one or more of its quality goals and meets one or more of its quality requirements.

In an architecture quality case, evidence is official factual information that clearly proves the
truth of the architects’ arguments. It is what supports their claims that a system or subsystem

CMU/SEI-2006-HB-001 31

architecture helps it to achieve one or more of its quality goals or meet one or more of its
quality requirements.

Figure 6 shows the two types of architectural evidence and how they relate to the other com-
ponents of an architecture quality case.

Architectural
Quality Case

Architectural
Claim

Architectural
Argument

Architectural
Evidence

justifies belief in supports

Official
Documentation
(e.g., Diagrams,

Models, and
Documents)

Witnessed
Demonstrations
(e.g., Scenarios,

Tests, and
Simulations)

Figure 6: Types of Architectural Evidence

Typical examples of valid evidence that the architects can use to support their arguments in-
clude the following:

• Official Documentation

Evidentiary documentation typically includes the relevant parts of the following types of
official23 endeavor24 documentation:

− Architecture Documents
− Documents

For example, this documentation includes system or subsystem architecture docu-
ments or system or subsystem design documents/descriptions.

− Presentation Materials
For example, this documentation includes system or subsystem architecture pres-
entation materials that are made created for official programmatic milestone re-
views, such as PDRs.

23 Documentation is typically considered to be “official” and appropriate for use as quality case evi-

dence if it is under configuration control, is being maintained, and is intended to be used as a
driver for design, implementation, and [especially integration] testing.

24 The term endeavor is used to clarify that the evidence need not be restricted to an individual pro-
ject. The evidence may belong to a program of related projects (e.g., a product line of programs)
or to an entire enterprise of related projects and programs.

32 CMU/SEI-2006-HB-001

− Training Materials
For example, this documentation includes system or subsystem architecture train-
ing materials used to train new architects, designers, and testers in the existing ar-
chitecture.

− Rule Inspection Results
This documentation reports the results of an inspection to determine how well a
single architecture follows a common set of architectural rules. These inspection
results help determine the quality of an individual subsystem and can also be used
to determine architectural integrity across subsystems.

− Executable Architecture Test Results
This documentation includes test reports resulting from the testing of executable
subsystem architectures.

− Functional Description Documents
This documentation includes technical documentation of the allocation of logical
system functions and their allocation to architectural elements.

− Interface Description Documents
This documentation includes technical documentation describing the data and con-
trol interfaces between architectural elements including source, destination, data
type, communication medium (e.g., electric, fiber-optic, or radio), and protocol
used.

− Product Technical Documentation
This documentation includes vendor-supplied technical documentation describing
COTS products used as architectural elements.

− Product Trade Studies
This documentation includes internally developed or commissioned trade studies
documenting vendors and their COTS products that have been selected to be used
as architectural elements.

− Quality Factor White Papers
This documentation includes system or subsystem interoperability, performance,
reliability, safety, and security white papers.

− Requirements Traceability Matrices
This documentation includes requirements traceability matrices that map relevant
quality factors or quality-related requirements to the architectural elements that
help achieve them.

− Technology Evaluations
This documentation includes trade studies and forecasts of the major technologies
to be used including fore cases of their maturity during various states of develop-
ment and production.

− Architecture Models
− Data Models

These models include logical or physical data models showing data storage or data
flows.

− Functional Models
These models include logical models of the architecture in terms of major system
or subsystem functions and the data/control flows between them.

CMU/SEI-2006-HB-001 33

− Object Models
These models include models of the major architectural elements in terms of
classes and the relationships (e.g., inheritance, association, aggregation, message
passing) between them.

− State Models
These models include models of an architectural element’s states and the transi-
tions between these states including substates and transition triggers and guards.

− Architecture Diagrams
− Activity/Collaboration Diagrams

These diagrams show interactions (e.g., messages, data flows, and event traces)
between architectural elements and external actors and systems.

− Allocation Diagrams
These diagrams show the allocation of data and software architectural elements to
hardware architectural elements.

− Aggregation Diagrams (Configuration Diagrams)
These diagrams show how one or more architectural elements are decomposed into
their component architectural elements and the aggregation relationships between
them (i.e., the aggregation hierarchy).

− Context Diagrams
These diagrams show the relationships between a blackbox system/subsystem and
the external actors and/or systems with which it interacts.

− Data Flow Diagrams
These diagrams show the major data types that flow between architectural ele-
ments.

− [Hardware] Block Diagrams
These diagrams show the main hardware architectural elements and how they are
connected. These are very similar to network diagrams, which concentrate on the
networks connecting the hardware components as well as the network connectivity
devices.

− Hardware Schematics
These diagrams show the internal “wiring” of the architectural elements and the
physical “wiring” interfaces of the architectural elements.

− Layer Diagrams
These diagrams show the various logical horizontal levels making up the logical
architecture.

− Network Diagrams
These diagrams show the networks and network connectivity diagrams that enable
the hardware architectural elements and external systems to communicate. These
diagrams show network types and configurations as well as protocols used.

− Statecharts or State Transition Diagrams
These diagrams document an architectural element’s states and the transitions be-
tween these states including substates and transition triggers and guards.

− Timing Diagrams
These diagrams show how the real-time operating systems perform time slicing
and schedule processes.

− Wiring Diagrams
These diagrams show how architectural hardware elements are wired together.

34 CMU/SEI-2006-HB-001

− Assessor-Witnessed Demonstrations
− Architecture Simulations

Observation of the output of architecture simulations
− Executable Architecture Tests

Observation of the output of a tests of executable architectures (e.g., architecture
prototypes)

− Hardware Components
Observation of hardware/network physical architecture components and their in-
terconnections in a development laboratory

Although evidence typically consists of current project architectural diagrams, models, and
textual documentation that are under configuration control, evidence may also include wit-
nessed demonstrations. For example, demonstrations could include hardware exhibited to and
directly observed by the assessment team such as the configuration of the subsystems of a
system prototype seen during a tour of a development lab.

Architects often submit documentation that provides evidence of architectural intent, rather
than evidence of the actual architecture. Although of some limited value, the following
documentation should not be considered to be proper architecture quality case evidence be-
cause it does not document actual architectural decisions (architecture style, architecture pat-
terns, or architecture mechanisms) made to ensure system architecture quality:

• Architecture Plans

• Architecture Policies

• Architecture Rule Lists (and unfilled-out, associated checklists)

• Architecture Schedules

• Architecture Team Charters and Memberships

• Architecture Standards and Procedures

3.2 Quality Case Diagram
Based on the preceding definitions, Figure 7 illustrates how architecture quality cases can be
structured in a fairly standardized manner as a result of their standard content and because
they are organized by quality factor and quality subfactors into the following:

• Architecture Claims that the architecture adequately helps the system
− achieve one or more quality goals

− quality factor (e.g., interoperability, performance, reliability, or security)
− quality subfactors of the quality factor (e.g., performance can be decomposed into

jitter, latency, response time, schedulability, and throughput)
− meet one or more quality-related requirements

− quality factor requirement mandating a minimum amount of some quality factor or
quality subfactor

CMU/SEI-2006-HB-001 35

− quality constraint mandating the use of some architecture, design, or implementa-
tion decision related to the quality factor

Architectural
Quality Case

Architectural
Claim

Architectural
Argument

Architectural
Evidence

justifies belief in supports

makes architects’ case for
the quality of an

Architecture

Quality
Goal

Quality-Related
Requirement

claims the architecture
adequately helps the
system achieve its

Quality
Factor
Goal

Quality
Subfactor

Goal

Architectural
Decision Rationale

justifiesQuality Goal
Claim

Quality
Requirement

Claim

claims the architecture
adequately helps the

system meet its

ensures
achieving

supports

System

Subsystem

has an

Quality Factor
Requirement

Quality Subfactor
Requirement

concerns

Quality
Constraint

Official
Documentation
(e.g., Diagrams,

Models, and
Documents)

Witnessed
Demonstrations
(e.g., Scenarios,

Tests, and
Simulations)

Figure 7: Components of Architectural Quality Cases

• Architecture Arguments
− architectural decisions (e.g., use of architectural mechanisms, patterns)
− rationale that these architectural decisions give the architecture properties that justify

belief in these architecture claims
• Architecture Evidence supporting the arguments consisting of the relevant parts of

− official documentation such as
− documents
− diagrams
− models

− witnessed demonstrations
− scenarios
− simulations (e.g., of executable architecture models or specifications)
− tests (e.g., of executable architectures)

36 CMU/SEI-2006-HB-001

Appendix C.1 defines the most commonly used quality factors and quality subfactors, while
Appendix E contains several example architectural quality cases.

Because a software-intensive system may have a large number of significant subsystems
needing assessment, a large number of system architecture quality assessments may need to
be performed. In addition, a large number of quality factors (see Appendix C) may be suffi-
ciently important to assess each of these significant subsystems against. Thus, each of these
subsystem assessments may generate (or make use of) a large number of

1. Claims (quality factor and subfactor goals and requirements)

2. Arguments (architectural decisions and associated rationales)

3. Evidence (relevant parts of diagrams, models, documents, and witnessed demonstra-
tions)

Architects, assessors, and other stakeholders need ways to deal with this complexity. One
such way is to organize the quality cases and their component information hierarchically by:

1. Tier

Initially, vertically group the assessment information top-down according to tier level
within the overall system architecture.

2. Subsystem

Horizontally group the assessment information about each tier according to subsystem
(e.g., first by parent subsystem and then alphabetically by subsystem name)

3. Quality Factor

Group the assessment information about each subsystem according to the quality factors
that are relevant to the subsystem, specifically, by the claim that the subsystem architec-
ture adequately supports the achievement of the quality factor (e.g., performance and us-
ability).

4. Quality Subfactor

Group the assessment information of the quality factors according to quality subfactor,
specifically, by the claims that the subsystem architecture adequately supports the
achievement of the quality subfactors.

5. Quality Case

Group the assessment information of the quality subfactors according to individual qual-
ity case.
a. Claims
 Finally, group the claims first by quality factor goal claims, second by quality sub-

factor goal claims, and third by quality requirements claims.
b. Arguments
 Similarly, group the arguments by architectural decisions and associated rationales.

CMU/SEI-2006-HB-001 37

c. Evidence
 Similarly, group the evidence first by documentation (e.g., diagram, model, and

document) and by witnessed demonstrations.

Note that with this approach, there is typically one quality case per quality subfactor. There
could also possibly be one quality case per quality factor if the quality factor does not have
multiple, obvious quality subfactors. It is conceivable that one could develop a single com-
pound quality case for each subsystem by combining all of the quality cases for all of the
relevant quality factors for that subsystem.25 However, such a combined quality case would
be very large and difficult to understand and navigate. Similarly, one could produce a com-
pound quality case for all subsystems in a tier of the architecture or even a single, mega-
quality case for the entire system by combining the lower level quality cases. Although pos-
sible in theory, this is inadvisable in practice as it becomes much too large and complex for a
human to readily comprehend.

As illustrated in Figure 8, a single quality case can be thought of as a pyramid pointing to the
architects’ assertion that the system and subsystems architecture helps the system or subsys-
tems being assessed possess an adequate amount of some type of quality. This four-layer
pyramid consists of

1. Top-Level Claims

Top-level claims are claims that “the system/subsystem architecture helps the sys-
tem/subsystem achieve one or more quality factor or quality subfactor goals.” These are
made verifiable by second-level claims.

2. Second-Level Claims

Second-level claims are claims that “the system/subsystem architecture helps the sys-
tem/subsystem meet its associated quality requirements.” The belief in which is justified
by arguments.

3. Arguments

Arguments consist of architecture decisions with associated rationales. Arguments are
supported on a strong foundation of evidence.

4. Evidence

Evidence consists of architectural documentation and demonstrations witnessed by the
assessors.

25 A quality factor is considered relevant to a system/subsystem if it is architecturally significant and

if it has been selected as being within scope of the assessments.

38 CMU/SEI-2006-HB-001

Quality Case

make architects’ case for adequate quality of the

System
Architecture

Claims: Architecture Helps
System Achieves Goal

Claims: Architecture Helps System
Meets Requirement

Arguments: Architecture Decision (e.g., pattern,
mechanism, etc.) with Rationale

Evidence: Architectural Documentation
(e.g., diagram, model, document)

Evidence: Witnessed
Demonstrations

supports

justifies belief in

makes verifiable

Figure 8: Layered Structure of Quality Cases

The pyramid of information composing a quality case can be quite complex. Although it con-
sists of a relatively small number of claims, it can include a sizable number of arguments and
an even larger amount of evidence (hence the pyramid shape). This large amount of informa-
tion can be overwhelming, especially to the assessors who will not be as familiar with it as
the architects and especially if it is presented to them only in textual form (not counting any
evidence in the form of diagrams). Thus, a diagram summarizing the actual content of a qual-
ity case would be useful as an introduction of the quality case and as an aid in navigation
through its component information.

But what are the characteristics of such a diagram? Clearly, a quality case diagram and asso-
ciated notation should

• help the stakeholders (i.e., architects, assessors, and requirements engineers) navigate
through the potentially quite large amount of information composing a quality case

• summarize the component information of a quality case so that it helps the stakeholders
manage the complexity of the quality case

• clearly differentiate the different types of component information including
− claims

− quality factor goal
− quality subfactor goals
− quality requirements goals

− arguments
− architecture decisions
− associated rationales

CMU/SEI-2006-HB-001 39

− evidence
− architecture documentation (e.g., diagrams, models, and documents)
− witnessed demonstrations

• summarize the layered structure of a quality case including the important relationships
between the components

• use a standard notation (e.g., Unified Modeling Language [UML]) that is
− easy to learn or else is widely known by stakeholders
− intuitively understandable (e.g., not use large numbers of arbitrary symbols)
− easy to draw on a single chalk board or white board
− not required to have sophisticated tool support
− is nevertheless supported by commonly available tools for inclusion in presentation

materials (and possibly in deliverable quality case documentation if so desired)
• be practical in the sense of being both

− useful on real projects
− scalable to the size of real quality cases

Unfortunately, the existing diagramming method (Goal Structuring Notation [Weinstock 04])
fails to exhibit many of the positive characteristics in the preceding list. Therefore, this hand-
book introduces Quality Case Diagrams, a specialized UML class diagram specifically de-
signed to exhibit these positive characteristics. The quality case diagram notation consists of

• class icons (i.e., rectangles) to model the component parts of a quality case

• UML standard symbols for stereotypes (i.e., the left and right angle quotes: “«” and
“»”) to signify the different types of components (i.e., claims, arguments, and evidence)

• explicit labeling (e.g., “Goal:”, “Requirement:”) to clearly differentiate different kinds of
claims

• UML standard aggregation symbol (i.e., small diamond) to indicate aggregation

• unidirectional labeled associations to model the remaining relationships

Figure 9 is an example quality case diagram summarizing the architecture’s support for inter-
operability. Note that the class icons are placed in horizontal layers to help clarify the direc-
tions of the dependency relationships and to group similar component types. Note also that

• Belief in a single claim can be justified by multiple arguments.

• A single argument can justify belief in multiple claims.

• A single argument can be supported by multiple pieces of evidence.

• A single piece of evidence can support multiple arguments.

40 CMU/SEI-2006-HB-001

Goal:
Architecture Supports Interoperability

<<claim>>

Goal:
Architecture

Supports
Physical

Interoperability
<<claim>>

Goal:
Architecture

Supports
Syntax

Interoperability
<<claim>>

Architecture
Decision:
Layered

Architecture
<<argument>>

Goals:
Architecture

Supports
Protocol

Interoperability
<<claim>>

justifies
belief in

Goal:
Architecture

Supports
Energy

Interoperability
<<claim>>

Goal:
Architecture

Supports
Semantics

Interoperability
<<claim>>

Architecture
Decision:
Modular

Architecture
<<argument>>

Architecture
Decision:

Open Interface
Standards

<<argument>>

Architecture
Decision:

Proxies and
Wrappers

<<argument>>

Architecture
Decision:

Service Oriented
Architecture

<<argument>>

Requirements:
Architecture

Supports
Physical

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Syntax

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Protocol

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Energy

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Semantics

Interoperability
<<claim>>

Architecture
Decision:

Fly-By-Wire
<<argument>>

Architecture
Decision:
One-Way

Connections
<<argument>>

Wiring
Diagram

<<evidence>>

Hardware
Schematics

<<evidence>>

Context
Diagram

<<evidence>>

Configuration
Diagram

<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagrams

<<evidence>>

Activity or
Collaboration

Diagrams
<<evidence>>

Interoperability
Whitepaper
<<evidence>>

Vendor-Supplied
Technical

Documentation
<<evidence>>

Layer
Diagram

<<evidence>>

supports

Figure 9: Example Quality Case Diagram

CMU/SEI-2006-HB-001 41

To make quality case diagrams more understandable, it is useful to order the nodes within a
single horizontal level of the diagram as follows:

• alphabetically left to right (e.g., quality subfactor claims)

• in decreasing order of importance (e.g., arguments – architectural decisions)

• by node sizes in order to fit nicely when having multiple rows of arguments and evi-
dence

• to minimize the crossing of lines (usually the most important overriding criteria)

3.3 Potential Concerns
By now, it should be clear that safety cases can be generalized to quality cases to handle all of
the different quality factors and quality subfactors. It should also be clear that quality cases
can occur earlier in the development process, assessing architecture quality versus assessing
system quality. However, there are several significant differences between traditional safety
cases and architectural quality cases. One could argue that these differences are so significant
that it is inappropriate to use quality cases to assess the quality of system and subsystem ar-
chitectures or that one should modify the QUASAR method or architectural quality cases to
address any limitations in their use.

The following subsections provide a brief analysis of these differences and their ramifica-
tions.

3.3.1 Use All Quality Factors
Differences: Safety cases and QUASAR architecture cases exhibit the following differences
in terms of quality factors that are covered:

• Safety cases are naturally restricted to safety, which is only one of a large number of
quality factors.

• QUASAR architecture cases are a kind of quality case. As such, they can be developed
for any quality factor or quality subfactor, not just safety.

Ramifications: All quality factors can have associated quality goals and requirements, so the
architects can make associated claims for any quality factor (i.e., that the architecture ade-
quately supports the system or subsystem to achieve its associated goals and meet its associ-
ated requirements). Similarly, regardless of the quality factor, the architects make architec-
tural decisions that should have associated rationales. Thus, the architects should be able to
make clear and compelling arguments as to why their architecture justifies belief in their
claims. Finally, regardless of the quality factor, architects need to document their architec-
tural decisions in diagrams, models, and documentation, enabling them to provide sufficient
evidence that supports their arguments. Therefore, the type of quality factor does not nega-
tively impact the architects’ ability to create quality cases consisting of claims, justifying ar-
guments, and supporting evidence. In fact, non-safety quality cases should typically be

42 CMU/SEI-2006-HB-001

smaller and simpler than safety cases because (1) less information is required because suffi-
cient information to justify formal safety certifications is unnecessary and (2) the scope is
restricted to only architectural information.

Not restricting QUASAR architecture cases to only the safety quality factor has a positive
impact on the QUASAR method.

3.3.2 All Quality Factors Not Equally Important
Differences: System quality cases and QUASAR architecture cases exhibit the following
differences in terms of importance:

• Safety cases only address system safety and are only developed for safety-critical sys-
tems when safe system usage is critically important.

• QUASAR architecture cases - The absolute and relative importance different quality
factors varies from system to system. Although safety is crucial in safety-critical sys-
tems, availability and reliability may be much more important on some systems, while
security might be paramount in military systems storing classified data. QUASAR archi-
tecture cases can be developed for any quality factor or quality subfactor.

Ramifications: The assessors and architects have the flexibility to select, develop, and assess
quality cases only for those quality factors and subfactors for which quality cases are justified
in terms of cost and risk.

Using QUASAR architecture cases to address only those quality factors associated with the
highest risk or system cost has the positive impact of significantly lowering project risk and
potentially lowering system development cost and maintaining the schedule.

3.3.3 Use for Demonstration (Certification) vs. Assessment
Differences: Safety cases and QUASAR architecture cases exhibit the following differences
in terms of demonstration versus assessment:

• Safety cases have historically been used during safety certification to demonstrate that a
system is sufficiently safe to use. Safety cases have often been used to demonstrate the
safety of public transportation systems (e.g., airplanes, trains, and APMs) to ensure pub-
lic safety.

• QUASAR architecture cases are primarily used to assess the quality of system architec-
tures, not to demonstrate the quality of the system.

Ramifications: Because safety certification is contractually or legally mandated, it justifies a
very heavy investment in expense in both time and money to officially demonstrate. Whereas
safety certification demands a demonstration (i.e., proof) of safety, architecture assessment
typically only requires a preponderance of evidence to pass. Architecture quality cases will
typically be significantly smaller than safety cases.

CMU/SEI-2006-HB-001 43

Using QUASAR architecture cases for assessment rather than demonstration and certification
has the positive impact of significantly lowering their cost, both in terms of effort and sched-
ule.

3.3.4 System Quality Cases vs. QUASAR Architecture Cases
Differences: System quality cases and QUASAR architecture cases exhibit the following
differences in terms of system versus architecture cases:

• System quality cases present the developers’ claims, arguments, and evidence that the
system has sufficient quality.

• QUASAR architecture cases present the architects’ claims, arguments, and evidence that
the architecture adequately supports the quality of the system or subsystem.

Ramifications: Because architecture quality cases are restricted to architecture claims, archi-
tecture arguments, and architecture evidence, they do not contain design, implementation,
integration, or test information. Architecture quality cases also only address requirements to
the extent to which the architecture must meet architecturally significant requirements. Com-
pared to system quality cases, architecture quality cases will therefore be significantly smaller
and significantly less costly in terms of both effort and schedule.

Using QUASAR architecture cases rather than system quality cases has the positive impact of
significantly lowering their cost, both in terms of effort and schedule.

3.3.5 During Development vs. End of Development
Differences: Safety cases and QUASAR architecture cases exhibit the following differences
in terms of timing:

• Safety cases – Because safety is a system property, it can be demonstrated and certified
only at the end of system development. To demonstrate that a system is safe, one must
demonstrate proper requirements, architecture, design, implementation, integration, and
test because a failure in any of these disciplines can result in an unsafe system. Although
safety cases can and should be started early during development, this is why they are
completed only at the end of system development.

• QUASAR architecture cases – The architecture of the system is developed in an incre-
mental, iterative, and parallel manner as the system’s subsystems are identified and de-
veloped. Because the architecture drives the design, implementation, integration, and in-
tegration testing, the architecture of the individual subsystems is developed relatively
early during development.

Ramifications: Architecture cases are produced and reviewed relatively early during the de-
velopment cycle as the architecture is developed. Architecture cases are also developed and
reviewed in an incremental, iterative, and parallel manner as the architectures of the system’s
subsystems are produced.

44 CMU/SEI-2006-HB-001

Using QUASAR architecture cases early in the development cycle has a positive impact of
supporting the assessment of the architecture earlier during development than when using
complete quality cases, which must be used at the end of development because they address
design, implementation, integration, and testing as well as requirements and architecture.
This enables problems to be identified and corrected earlier, when they are less expensive and
more likely to be properly addressed.

CMU/SEI-2006-HB-001 45

46 CMU/SEI-2006-HB-001

4 QUASAR Teams

The following teams collaborate to prepare for and perform the architecture assessments:

1. Assessment Team

One or more assessment teams
a. collaborate with the architecture team to set the scope of the assessments
b. independently assess the quality of the system or subsystem architecture produced

by the associated architecture team

2. Architecture Team

The architecture teams at the different tiers in the system hierarchy
a. collaborate with the assessment team to set the scope of the assessments
b. make their quality cases to the assessment teams consisting of

− claims that their architecture fulfills its associated architecturally significant re-
quirements

− clear and compelling arguments supporting their claims (e.g., describe the asso-
ciated architectural decisions they have made and the rationales for these deci-
sions)

− adequate official evidence (e.g., architectural diagrams, models, and documents)
backing up their arguments

3. Requirements Team

The requirements teams at the different tiers in the system hierarchy
a. engineer the architecturally significant quality requirements
b. collaborate with the assessment team and architecture team to set the scope of the

assessments

Note that the number of teams and their membership varies from program to program de-
pending on many factors such as the size and complexity of the system and the [contractual]
relationships between the assessment teams and the architecture teams. Although it is typi-
cally important for assessment teams to remain independent from architecture teams to en-
sure that the assessment of the architecture is objective, in practice, a person can be a member
of multiple teams. Thus, the same person may be a member of multiple assessment teams, of
multiple architecture teams, or of both the requirements team and architecture team.

CMU/SEI-2006-HB-001 47

Top-Level
Architecture

Team

System
Architecture

Subsystem
Architectures

Architecturally
-Significant

(Quality)
Requirements

Quality
CasesSubsystem

Architecture
Teams

Assessment
Team(s)

Requirements
Team(s)

produce the

Architecture

drive the

produces the

produce the

assess the
quality of the

evaluate the
architects’

make their

make their

lead the

Figure 10: Teams and Their Interactions

4.1 Assessment Team
The following definition, responsibilities, membership, and work products apply to the as-
sessment team. On large programs, multiple assessment teams may perform assessments in
parallel.

• Definition

The assessment team independently26 assesses the quality of the architectures of a sys-
tem and its subsystems. This team assesses the degree to which architectures support the
derived requirements that have been allocated to the subsystems and that have driven the
development of the architectures.

26 To obtain an objective assessment, it is important that the assessment team is independent of the

architecture teams (e.g., in terms of staffing and reporting).

48 CMU/SEI-2006-HB-001

• Responsibilities

The members of the assessment team typically share the following responsibilities:

− Include subject matter experts.
If appropriate, the assessment team should identify and invite special subject matter
experts to join them. These experts in the application domain or a relevant specialty
engineering field can understand specialized architectural information, the architects’
decisions, and their associated rationales.

− Determine assessment scope.
The assessment team works with the architecture teams to set the scope of the as-
sessments in terms of the architectural elements assessed and the relevant quality fac-
tors.

− Collaborate.
The assessment team collaborates with the subsystem requirements and subsystem
architecture teams to schedule the meetings.

− Properly conduct preparations.
Members of the assessment team prepare for meetings by reading preparatory infor-
mation supplied by the requirements and architecture teams.

− Assess understanding.
Members of the assessment team evaluate the architects’ understanding of the quality
requirements that drive their architectures.

− Assess quality cases.
Members of the assessment team evaluate the architects’ claims, arguments, and evi-
dence concerning their architectures’ support for derived and allocated quality re-
quirements.

− Ask questions.
Members of the assessment team ask probing questions concerning the quality re-
quirements and the architecture. Note that is important that members of the assess-
ment team have strong backgrounds, be persistent in eliciting satisfactory answers
from the system and subsystem architects, and not be easily intimidated by such sen-
ior members of the development staff.

− Publish results.
Assigned members of the assessment team prepare and distribute the meeting min-
utes and reports.

− Update method.
Assigned members of the assessment team update the assessment method as appro-
priate based on lessons learned during the assessments.

• Membership
The members of the assessment team typically include people filling one or more of the
following roles:

− Assessors
Assessors are responsible for technically assessing the architectural information pro-
vided and presented by the architecture team to determine if the architecture suffi-

CMU/SEI-2006-HB-001 49

ciently supports its allocated and derived quality requirements. This role can include
customer representatives and consultants who are also architects. The assessment
team should retain a consistent core set of assessors who take part in all (or almost
all) subsystem assessments.

− Assessment Team Leader
The assessment team leader is an assessor who leads the assessment team. This role
often includes the responsibility of performing final negotiations with the architec-
ture teams regarding issues for which consensus is difficult to obtain.

− Meeting Facilitator
The meeting facilitator is an assessor who facilitates during meetings, ensuring that
the meeting discussions stay on track and that the meeting stays on schedule.

− Subsystem Liaison
The subsystem liaison is the member of the customer (acquisition) organization who
oversees the development of a subsystem. The subsystem liaison typically works
closely with the subsystem development team (and therefore the subsystem architec-
ture team) and should therefore be well versed in the subsystem architecture and its
status. Note that the subsystem liaison is typically not a core member of the assess-
ment team unless only a small number of subsystems are being assessed and the core
team contains all subsystem liaisons.

− Subject Matter Experts (SMEs)
Subject matter experts are assessors who are also specialty engineering experts.27
They are responsible for providing expertise in the
− application domain of the subsystem being assessed (e.g., avionics specialists for

avionics subsystems or communications engineers for communications subsys-
tems)

− quality factor (e.g., reliability engineers, safety engineers, and security engineers)
− Scribe

The scribe is an assessor who captures general observations and action items such as
requests for information or requests for action during the meeting.

• Work Products
− System Architecture Assessment Initiation Phase Work Products

− Architecture Assessment Training Materials
− Architecture Assessment Procedure
− Initial Kickoff Meeting Agenda
− Initial Kickoff Meeting Notes (developed by individual attendees)
− Architecture Assessment Schedule
− Architecture Assessment Action Item List

27 SMEs typically take part in the assessments on an as-needed basis. Thus, they are typically not a

part of the set of core members of the assessment team. It should be decided early as to whether or
not SMEs may vote on the subsystem assessment results (i.e., whether or not the subsystem archi-
tecture adequately supports a specific class of quality requirements and therefore what color it
earns on the subsystem architecture support matrix). Refer to Section 6.3.6 for more information
about the subsystem architecture support matrix and its contents.

50 CMU/SEI-2006-HB-001

− Initial Kickoff Meeting Minutes (built using individual attendee’s notes)
− Subsystem Requirements Meeting Work Products

− Subsystem Requirements Meeting Checklist
− Subsystem Requirements Meeting Assessor Notes (individual assessor’s notes)
− Subsystem Requirements Meeting Outbrief
− Subsystem Requirements Meeting Minutes (built using individual assessor’s notes)
− Updated Assessment Action Item List

− Subsystem Architecture Assessment Meeting Work Products
− Subsystem Architecture Assessment Checklist
− Subsystem Architecture Assessment Meeting Assessor Notes (individual assessor’s

notes)
− Subsystem Architecture Support Matrix
− Subsystem Architecture Assessment Meeting Outbrief
− Subsystem Architecture Assessment Meeting Report (built using individual asses-

sor’s notes)
− Updated Assessment Action Item List

4.2 Architecture Teams
Two types of architecture teams are involved in the architecture assessment method: the top-
level architecture team and multiple subsystem architecture teams. The same people may fill
roles on both types of architecture teams, especially on smaller projects. On large projects,
multiple subsystem architecture teams will probably participate in parallel assessments.

The following definition, responsibilities, membership, and work products apply to the archi-
tecture teams.

4.2.1 Top-Level Architecture Team
• Definition

The top-level architecture team is the team that produces the top-level architecture being
assessed.

• Responsibilities
− Lead the lower level (subsystem) architecture teams.
− Understand the assessment procedure and share this knowledge with the subsystem

architecture teams.
− Attend the initial kickoff meeting.
− Collaborate with the assessment team and top-level requirements team to

− Tailor the architecture assessment method.
− Set the scope of the architecture assessments in terms of subsystems, relevant

types of architecturally significant requirements (e.g., quality requirements), and
level of resources (e.g., time and money) to be invested in the assessments.

− Develop an initial schedule for assessments.

CMU/SEI-2006-HB-001 51

− Work with the subsystem architecture teams to ensure that they understand the sys-
tem architecture assessment method and their responsibilities with regard to its appli-
cation.

• Membership
− lead system architect
− subsystem architects

• Work Products
− Initial Kickoff Meeting Work Products

− recommended tailoring of the architecture assessment method
− recommendations regarding the scope of the architecture assessments
− recommendations regarding the scheduling of assessment meetings

− Subsystem Requirements Meeting Work Products
− none

− Subsystem Architecture Assessment Meeting Work Products
− none

4.2.2 Subsystem Architecture Teams
• Definition

Subsystem architecture teams are the teams that produce the individual subsystem archi-
tectures being assessed.

• Responsibilities
− Prepare and provide preparatory materials for the meetings to the assessment team

sufficiently early for the assessment team to properly review them.
− Prepare and present meeting presentation materials to the assessment team to con-

vince them that the subsystem adequately supports its allocated and derived quality
requirements. This includes quality cases consisting of
− claims that their architecture provides sufficiently support for the derived archi-

tecturally significant requirements that have been allocated to their subsystem
− clear and compelling arguments supporting these claims
− sufficient evidence backing up the arguments

− Answer evaluators’ questions regarding their architectural decisions.
− Review subsystem meeting outbriefs, minutes, and reports for factual errors (e.g., in-

correct observations and missing evidence).

• Membership
− subsystem architects
− lead architect (if appropriate during the meetings)
− sub-subsystem architect(s)
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)

52 CMU/SEI-2006-HB-001

• Work Products
− Initial Kickoff Meeting Work Products

− none
− Subsystem Requirements Meeting Work Products

− Subsystem Requirements Review Preparatory Materials (architecture-related in-
formation)

− Subsystem Requirements Review Presentation Materials (architecture-related in-
formation)

− Subsystem Requirements Review Meeting Agenda (architecture-related informa-
tion)

− Subsystem Architecture Assessment Meeting Work Products
− Subsystem Architecture Preparatory Materials
− Subsystem Architecture Meeting Agenda
− Subsystem Architecture Presentation Materials

4.3 Requirements Teams
Two types of requirements teams are involved in the architecture assessment method: the top-
level requirements team and multiple subsystem requirements teams. The same people may
fill roles on both types of requirements teams, especially on smaller projects. On large pro-
jects, multiple subsystem requirements teams will probably participate in parallel assess-
ments.

The following definition, responsibilities, membership, and work products apply to the re-
quirements teams.

4.3.1 Top-Level Requirements Team
• Definition

The top-level requirements team is the team that engineers (e.g., identifies, analyzes,
specifies, and manages) the system requirements of the system architecture being as-
sessed.

• Responsibilities
− Engineer system goals and requirements.

− Engineer system functional, data, and interface requirements and appropriate con-
straints.

− Engineer system quality requirements.28
− Ensure that all requirements (especially the architecturally significant requirements)

are cohesive, complete, consistent, correct, current, externally observable, feasible,

28 In practice, many system-level requirements engineers are primarily trained in methods (e.g., use

case modeling) for engineering functional requirements. Unfortunately, many do not know how to
engineer quality requirements that are feasible, unambiguous, and verifiable.

CMU/SEI-2006-HB-001 53

mandatory, relevant, stakeholder-oriented, and unambiguous, can be validated and
verified.

− Lead the lower level (subsystem) requirements teams.
− Understand the assessment procedure and share this knowledge with the subsystem

requirements teams.
− Attend the initial kickoff meeting.

− Collaborate with the assessment team and top-level architecture team to

− Tailor the architecture assessment method.
− Set the scope of the relevant types of architecturally significant requirements (e.g.,

quality requirements), and level of resources (e.g., time and money) to be invested
in the assessments.

− Develop an initial schedule for assessments.
− Work with the subsystem requirements teams to ensure that they understand the sys-

tem architecture assessment method and their responsibilities with regard to its appli-
cation.

• Membership
− requirements team leader
− requirements engineers
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)

• Work Products
− System Architecture Assessment Initiation Meeting Work Products:

− Initial Kickoff Meeting Notes

4.3.2 Subsystem Requirements Teams
• Definition

The subsystem requirements teams are teams that engineer (e.g., identify, analyze, spec-
ify, and manage) the derived requirements that have been allocated to the individual sub-
system architectures being assessed

• Responsibilities
− Engineer derived goals and requirements.

− Engineer subsystem functional, data, and interface requirements and appropriate
constraints.

− Engineer quality requirements.29
− Derive subsystem goals and requirements.

29 In practice, subsystem requirements engineers are like system requirements engineers in that they

are primarily trained in methods (e.g., use case modeling) for engineering functional requirements.
Unfortunately, many do not know how to engineer quality requirements that are feasible, unambi-
guous, and verifiable.

54 CMU/SEI-2006-HB-001

− Ensure that all requirements (especially the architecturally significant requirements)
are cohesive, complete, consistent, correct, current, externally observable, feasible,
mandatory, relevant, stakeholder oriented, unambiguous, and can be validated and
verified.

− Collaborate with the subsystem architecture team to ensure that all architecturally
significant requirements are properly
− derived
− identified (e.g., tagged) as such
− specified in sufficient detail to provide adequate guidance

• Membership
− requirements team leader
− requirements engineer
− specialty engineering team representatives (for quality factors treated as specialty en-

gineering, such as reliability, safety, and security)

• Work Products
− System Architecture Assessment Initiation Meeting Work Products:

− none
− Subsystem Requirements Meeting Work Products:

− Subsystem Requirements Meeting Preparatory Materials
− Subsystem Requirements Meeting Presentation Materials
− Subsystem Requirements Trace

− Subsystem Architecture Assessment Meeting Work Products
− none

CMU/SEI-2006-HB-001 55

56 CMU/SEI-2006-HB-001

5 QUASAR Phases and Tasks

As illustrated in Figure 11, the QUASAR method is decomposed into the following phases:

1. System Architecture Assessment Initiation Phase
This preparatory phase occurs once at the beginning of the overall system assessment.

 Subsystem Phases
a. Subsystem Requirements Review Phase
 This phase is repeated for each subsystem for which the architecture is being as-

sessed. It ensures that the associated quality requirements are properly allocated
and specified. It also ensures that the architecture team is ready to develop their
quality cases.

b. Subsystem Architecture Assessment Phase
 This phase is repeated for each subsystem for which the architecture is being as-

sessed. During this phase, the subsystem architecture team presents their quality
cases to the assessment team.

2. System Architecture Assessment Summary Phase
This phase typically occurs once at the end of the overall assessment. During this final
phase, the results of the subsystem architecture quality assessments are summarized and
presented to their stakeholders.

System Architecture
Assessment Initiation

Subsystem
Requirements

Review

Subsystem
Architecture
Assessment

System Architecture
Assessment Summary

repeat for each subsystem being assessed

done

no

yes

Figure 11: QUASAR Phases

CMU/SEI-2006-HB-001 57

As illustrated in Figure 12, each of these phases is decomposed into three subtasks: pre-
meeting preparation, the associated meeting, and post-meeting follow-through. The figure
does not show any iteration that might be necessary.30

1. System Architecture Assessment Initiation Phase
a. Task: System Architecture Assessment Initiation – Preparation
 The assessment team and overall architecture team prepare by exchanging and

reading relevant pre-meeting documentation.
b. Task: System Architecture Assessment Initiation – Meeting
 The assessment team and overall architecture team hold an initial kickoff meeting

during which they agree on the scope and method for the architecture assessments.
c. Task: System Architecture Assessment Initiation – Follow-Through
 The assessment team reports their findings and recommendations to the overall ar-

chitecture team and other stakeholders.

Subsystem Assessments
For each subsystem being assessed on a subsystem by subsystem basis perform the
following tasks:
a. Subsystem Requirements Review Phase
− Task: Subsystem Requirements Review – Preparation

The assessment team and subsystem architecture team prepare by exchanging
and reading relevant pre-meeting documentation.

− Task: Subsystem Requirements Review – Meeting
The subsystem architecture team demonstrates to the assessment team their
knowledge of the architecturally significant requirements and their understand-
ing of what is expected of them during the coming assessment.

− Task: Subsystem Requirements Review – Follow-Through
The assessment team reports their findings and recommendations to the sub-
system architecture team and other stakeholders.

b. Subsystem Architecture Assessment Phase
− Task: Subsystem Architecture Assessment – Preparation

The assessment team prepares by exchanging and reading relevant pre-meeting
documentation provided by the subsystem architecture team.

− Task: Subsystem Architecture Assessment – Meeting
The subsystem architecture team presents to the assessment team their cases
that the architecture adequately supports its architecturally significant re-
quirements.

− Task: Subsystem Architecture Assessment – Follow-Through
The assessment team reports their findings and recommendations to the sub-
system architecture team and other stakeholders.

30 The two major reasons for repeating the requirements reviews and architecture assessments are (1)

if the subsystems were not ready or (2) if the reviews and assessments did not (completely) pass
the first time.

58 CMU/SEI-2006-HB-001

2. System Architecture Assessment Summary Phase
a. Task: System Architecture Assessment Summary – Preparation
 The assessment team prepares by rolling up the results of the individual subsystem

assessments into an overall system architecture assessment.
b. Task: System Architecture Assessment Summary – Meeting
 The assessment team reports the overall system architecture assessment results to

the system architecture team and other stakeholders.
c. Task: System Architecture Assessment Summary – Follow-Through
 The assessment team captures lessons learned and updates the architecture assess-

ment method.

The subsections in this section discuss these phases in more detail.

Arch.
MeetingPrep. Follow

Through

Subsystem Architecture
Assessment Phase

Rqmts.
MeetingPrep. Follow

Through

Subsystem Requirements
Review Phase

Initial
MeetingPrep. Follow

Through

System Architecture
Assessment Initiation

Phase

Final
MeetingPrep. Follow

Through

System Architecture
Assessment Summary

PhaseTime (not to scale)

S
ub

sy
st

em
 1

A
rc

hi
te

ct
ur

e
A

ss
es

sm
en

t

Arch.
MeetingPrep. Follow

Through

Subsystem Architecture
Assessment Phase

Rqmts.
MeetingPrep. Follow

Through

Subsystem Requirements
Review Phase

S
ub

sy
st

em
 2

A
rc

hi
te

ct
ur

e
A

ss
es

sm
en

t

Arch.
MeetingPrep. Follow

Through

Subsystem Architecture
Assessment Phase

Rqmts.
MeetingPrep. Follow

Through

Subsystem Requirements
Review Phase

S
ub

sy
st

em
 N

A
rc

hi
te

ct
ur

e
A

ss
es

sm
en

t

Figure 12: QUASAR Phases and Tasks

5.1 System Architecture Assessment Initiation
Phase

A system architecture assessment initiation phase occurs at the beginning of the QUASAR
architecture assessment method.

CMU/SEI-2006-HB-001 59

Phase Objective
The objective of this phase is to properly prepare both the assessment and architecture teams
to assess the subsystem architectures.

Phase Tasks
As illustrated in , this assessment initiation phase consists of the following three
tasks, which are performed sequentially:

Figure 12

1. System Architecture Assessment Initiation – Preparation

2. System Architecture Assessment Initiation – Initial Kickoff Meeting

3. System Architecture Assessment Initiation – Follow-Through

60 CMU/SEI-2006-HB-001

Initial
Kick-off
Meeting
Notes

System
Architecture Assessment Initiation

Phase

Preparation
Task

Meeting
Task

Architecture
Assessment

Schedule

Architecture
Assessment

Action Item List

Initial
Kick-off
Meeting
Agenda

Architecture
Assessment
Procedure

Architecture
Assessment

Training
Materials

Initial
Kick-off
Meeting
Minutes

Follow-Through
Task

Assessment
Team

discussions

Top-Level
Requirements Team

discussions

Subsystem
Requirements Teams

Top-Level
Architecture Team

Top-Level
Development Team

discussions discussions

Subsystem
Architecture Teams

Figure 13: System Architecture Assessment Initiation Phase

As illustrated in Figure 13, three tasks of the system architecture assessment initiation phase
involve the assessment team and the top-level architecture team producing or using following
work products:

1. Architecture Assessment Procedure
2. Architecture Assessment Training Materials
3. Initial Kickoff Meeting Agenda
4. Initial Kickoff Meeting Notes
5. Initial Kickoff Meeting Minutes
6. Assessment Schedule
7. Assessment Action Item List

CMU/SEI-2006-HB-001 61

5.1.1 System Architecture Assessment Initiation –
Preparation

Preparation Task Objective
The objective of this task is to ensure that the system architecture team and the assessment
team are properly prepared for the assessment kickoff meeting.

Preparation Task Duration
The duration of this task largely depends on the availability of the members of the system
architecture team and the members of the assessment team; it may vary anywhere from a few
days to a few weeks.

Preparation Task Preconditions
This task can be started when the decision to perform a system architecture quality assess-
ment has been made.

Preparation Task Steps
Prior to the initial kickoff meeting, perform the following steps:31

1. Staff assessment team.

Step: The management of the assessment organization ensures that the assessment team
is properly staffed with its initial members.32

Rationale: As documented in Section 4.1, the assessment team needs to be staffed with
an assessment team leader, a meeting facilitator, assessors, subject matter experts, and a
scribe. Although all team members may not be available at the beginning of the process,
and although subject matter experts will be members of the assessment team based on
availability and relevance to the subsystem being assessed, a core group of permanent
members should be assigned to the team at this time.

2. Train assessment team.

Step: A qualified and experienced member of the assessment team uses the architecture
assessment training materials and architecture assessment procedure to train the other
members of the assessment team in the proper use of the architecture assessment
method.

Rationale: The assessment team will be much more effective if they understand the
method that they will use.

31 The amount of time prior to the meeting will vary depending on the circumstances of the assess-

ment. Care should be taken to enable just-in-time preparation, while ensuring adequate prepara-
tion time.

32 The tasks, subtasks, and steps are numbered in this handbook for the sake of easy identification
during discussions and negotiations between teams. Because an iterative, incremental, and parallel
development cycle and corresponding assessment method is assumed, these tasks, subtasks, and
steps may be performed in different orders and concurrently.

62 CMU/SEI-2006-HB-001

3. Identify top-level requirements and architecture teams.

Step: The assessment team works with the management of the development organization
to identify their top-level requirements team, their top-level architecture team, and the
members of these two teams who will participate in the assessment.

Rationale:
− Depending on the timing of the system architecture assessment initiation meeting, the

members of these two teams should know primary architecturally significant system
requirements or at least the associated quality goals if proper requirements have not
yet been specified. The system requirements team should have by this time elicited
these architecturally significant requirements from the system’s various stakeholders.
This knowledge will be necessary to set the scope of the overall system architecture
quality assessment.

− The top-level requirements team is typically responsible for engineering the require-
ments of either the overall system or the top-level subsystem, the architecture of
which is being assessed. They are therefore responsible for engineering the architec-
turally significant system quality requirements.

− Similarly, the top-level architecture team is typically responsible for developing the
architecture of either the overall system or the top-level subsystem, the architecture of
which is being assessed. They will also be responsible for ensuring the architectural
integrity of the lower level subsystems.

− Depending on the structure of the development organization, the members of these
two teams may be difficult to identify.

4. Train top-level architecture team.

Step: Several weeks prior to the initial kickoff meeting, a qualified and experienced
member of the assessment team uses the architecture assessment training materials and
architecture assessment procedure to train the members of the top-level requirements
and architecture teams in the proper use of the architecture assessment method. The
members of the top-level requirements and architecture teams are expected to read the
architecture assessment procedure.

Rationale:
− Training must typically be provided several weeks prior to the initial kickoff meeting

because the top-level architecture team members need adequate time to read the as-
sessment procedure in addition to preparing for the assessment.

− The members of the top-level architecture team need to understand what is expected,
both of them and of the members of the lower level subsystem requirements and ar-
chitecture teams, to ensure that the assessment method meets the needs of the re-
quirements and architecture teams as well as the needs of the assessment team.

5. Organize the meeting.

Step: At least two weeks prior to the initiation meeting, the assessment, system require-
ments, and system architecture teams collaborate to

CMU/SEI-2006-HB-001 63

a. Identify meeting attendees and other stakeholders.
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to develop a list of meeting attendees and other stakeholders.
Rationale: It is important to ensure that no significant stakeholder is overlooked.

b. Set time and location.
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to set an exact time and location (e.g., address, building number, and room
number) for the system architecture assessment initiation meeting.
Rationale: Attendees need an exact time to avoid schedule conflicts.

c. Develop meeting agenda.
 Substep: The assessment, system requirements, and system architecture teams col-

laborate to produce a meeting agenda covering setting the assessment scope and
schedule, tailoring the assessment method, and meeting wrap-up (e.g., assignment
of action items).
Rationale: Agendas enable attendees to identify the parts of the meeting that are
most important to them.

d. Invite stakeholders.
 Substep: The assessment team sends an invitation including the meeting agenda to

the identified meeting attendees and other stakeholders.
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas.

Rationale: It is important to set a mutually agreed upon time and location for the initial
meeting, especially because members of all three teams tend to be very busy. The loca-
tion should either be colocated with the architects (which will help minimize disruptions
for them) or be off-site so that requirements and architecture teams are less likely to be
distracted or called away.

Preparation Task Postconditions
This task is successfully completed when the following postconditions are met:

• The assessment team has been properly staffed and trained in the assessment method.

• The top-level requirements and architecture teams have been identified and trained in
the assessment method.

• The system architecture assessment initiation meeting has been organized.

5.1.2 System Architecture Assessment Initiation – Meeting
Meeting Task Objectives
The system architecture assessment phase meeting has the following major objectives:

1. Determine assessment scope.

A primary objective of this meeting is to determine the scope of the overall assessment
including the types of architecturally significant (e.g., quality) requirements against
which to assess the architectures of the system and its subsystems, the subsystems to be
assessed, and the quantity of resources available to conduct the assessments:

64 CMU/SEI-2006-HB-001

− Architecturally Significant Requirements
The importance of the different types and subtypes of architecturally significant re-
quirements can vary greatly depending on the system whose architecture is being as-
sessed. Typically, the architecturally significant requirements that are at highest risk
for not being adequately supported by the architecture are the quality requirements.
For example, performance is critical to real-time systems, interoperability is critical
to systems that must communicate with many other systems, safety is obviously
critical to safety-critical systems, and security can be critical to systems that must
protect valuable assets from malicious attack.

− Subsystems
The size of the system also impacts how many subsystems can be assessed given the
limitations on project resources. If the system is decomposed into multiple subsys-
tems, which are further decomposed into lower level subsystems, and so on, then the
architecture is typically too large and complex to be assessed all at once. Often, mul-
tiple assessments are performed, one for each subsystem that is allocated important
architecturally significant requirements. The subsystem architecture assessments are
typically performed top-down by tier and horizontally within tiers based on the de-
velopment schedule. Eventually, the subsystem assessment results are rolled up to
produce the overall system assessment results.

− Assessment Resources
The amount of time and effort available to perform the assessment also varies from
system to system depending on the system’s importance, schedule, and the availabil-
ity of assessment and architecture team members.

2. Draft assessment schedule.

A second objective of the initiation meeting is to generate a general assessment schedule
that enables the assessment team, the subsystem requirements team, and the architecture
team to prepare for the subsystem assessments:

− Schedule Sufficiency
The schedule of the requirements review meetings must allow the subsystem re-
quirements teams to derive and the subsystem architecture teams to allocate the ar-
chitecturally significant requirements to the subsystems being assessed.

− Sufficient Yet Flexible Architecture
The schedule of the assessment meetings must allow the subsystem architecture
teams sufficient time to create subsystem architectures that are sufficiently mature
yet early enough to allow the architectures to be improved based on the results (i.e.,
the architectures cannot have been frozen and already used as the basis for significant
design, implementation, and testing).33

33 The need for the subsystem architecture that is being assessed to be sufficiently complete to sup-

port a meaningful assessment and yet flexible enough to be improved as a result of the assessment,
can be difficult to achieve if an agile method is being used that promotes minimal, incremental,
just-in-time architecture development as part of short duration iterations. In such methods where
subsystem architecture, design, implementation, and test happen concurrently, any architectural
problems identified may require abandonment of the associated design, implementation, and test.

CMU/SEI-2006-HB-001 65

− Prior to Major Reviews
The subsystem architecture assessments are often scheduled prior to appropriate ma-
jor project milestone reviews so that the results of the architectural assessments can
be reported during the reviews.

− Competing Schedule Pressure
Subsystem requirements reviews and subsystem architecture assessments compete
with many other activities and tasks for limited resources. Specifically, assessors, re-
quirements engineers, and architects are key personnel with very heavy schedules,
making it difficult to develop assessment schedules when all stakeholders are avail-
able to prepare and take part.

3. Tailor architecture assessment method to be effective.

Unfortunately, conflicting goals of the assessment team and the subsystem requirements
and architecture teams may make it difficult to achieve consensus on how to tailor the
QUASAR method.

− Assessment Team
The assessment team naturally wants to ensure an effective assessment and minimize
the effort required to prepare for and perform the assessments. For example, they
want an assessment method that provides them with highly relevant documentation
organized by the type of architecturally significant requirement (e.g., quality factor).
In contrast, the architecture team might feel it’s sufficient to supply existing docu-
mentation, regardless of its organization or appropriateness as evidence.

− Subsystem Requirements Teams
The subsystem requirements engineers naturally want to limit the impact of the re-
quirements reviews on their requirements, many of which may already be frozen.
They may not want to follow an assessment method that would generate significant,
new, and verifiable quality requirements when they have concentrated heavily on
functional requirements (e.g., by emphasizing use case modeling) and specified
vague quality goals, rather than unambiguous quality requirements.

− Subsystem Architecture Teams
The subsystem architects naturally want to limit the impact of the assessments on
their effort because they are typically in the midst of developing and ensuring the in-
tegrity of their architectures. They may also not want to use an assessment method
that causes them to develop significant new evidence for the assessments if they did
not generate appropriate documentation during the normal course of developing their
architectures.

Meeting Task Duration
The initial kickoff meeting can typically be completed in one day. However, the duration of
the kickoff meeting depends on the ability of the assessment team and top-level architecture
team to effectively collaborate to quickly achieve consensus on the scope of the architecture

Fortunately, there is a growing recognition of the need for a complete and stable architecture prior
to the agile development of the associated design, implementation, and test work products.

66 CMU/SEI-2006-HB-001

assessments in terms of the types of architecturally significant requirements that will form the
basis of the assessments, the subsystems to assess, the assessment schedule, and the details of
how to tailor the assessment method.

Meeting Task Preconditions
This task can be started when the following preconditions are met:

• The assessment team has been properly staffed and trained in the assessment method.

• The top-level requirements and architecture teams have been identified and trained in
the assessment method.

• The system architecture assessment initiation meeting has been organized.

Meeting Task Steps
During the initial kickoff meeting, complete the following steps:

1. Set scope.

Step: The assessment team and the top-level requirements and architecture teams col-
laborate to build a consensus on the scope of the assessments.34

Rationale:
− It is critical to get an up-front consensus among the major stakeholders on the scope

of the overall assessment.
− There should be (but often is not) a general agreement among the three teams as to

what are the most important quality factors against which to assess the system archi-
tecture. However, depending on the application domain, size, and complexity of the
system, quality factors that are important for some subsystems may not be important
for others. It is therefore important to remember that this is merely an initial list,
which may be later modified to meet the assessment needs of individual subsystem
architectures.

a. Subsystems
 Substep: Take a risk-based approach to identify the subsystems, the architectures of

which are to be assessed.
Rationale: Sufficient resources are probably not available to assess all subsystems.
Limited assessment resources should be invested in assessing the architectures of
− mission- or safety-critical subsystems
− complex and/or large subsystems
− subsystems using previously untested architectures or technologies
− subsystems that are similar to subsystems that have previously had problems due

to poor architectures

34 Note that this implies that the assessment team has the knowledge and authority to speak for the

acquisition organization and that the top-level requirements and architecture teams have the
knowledge and authority to “speak” for the development organization with regard to establishing
the scope of the assessments.

CMU/SEI-2006-HB-001 67

− subsystems whose architectures are being produced by relatively inexperienced
architects

− subsystems that need to be certified (e.g., safety certifications, security certifica-
tions); the assessment ensures that arguments and evidence that will help con-
vince the certifiers are developed

b. Quality Factors
 Substep: Based on the subsystems selected to be assessed, create an initial priori-

tized list of the important types of architecturally significant quality requirements
against which the subsystems will be assessed.35
Rationale: Not all quality factors are relevant and the relevant quality factors are
not equally important. There is typically not sufficient time to assess the subsystem
architecture’s support for all relevant quality factors, so resources must be invested
in assessing those quality factors having the highest associated risk and largest
benefit.

c. Resources
 Substep: Set the resources per method task in terms of personnel and schedule (e.g.,

number of days to allocate to preparation, meeting, and follow-through).
Rationale: Limited resources must be applied wisely.

2. Develop schedule.

Step: The assessment team and the top-level requirements and architecture teams col-
laborate to develop an initial version of architecture assessment schedule. Although this
schedule should be relatively precise for the dates of the requirements reviews and archi-
tecture assessments for those subsystems to be assessed first, the schedule may be fairly
vague about the dates of later reviews and assessments.

Rationale: A rough overall schedule is needed early to ensure that resources can be
available when needed and that the assessment tasks do not conflict with other important
project tasks.

3. Tailor assessment method.

Step: If necessary, the assessment team and the top-level requirements and architecture
teams collaborate36 to tailor the QUASAR method to better meet the specific needs of
the system or subsystem being assessed. Tailoring typically involves modifying the
method’s

35 Note that would be very difficult without the top-level requirements team, which should be elicit-

ing this kind of information from the system’s stakeholders, and the top-level architecture team,
which should be able to help prioritize the resulting quality factors in terms of how they will im-
pact the system architecture.

36 To enable the method to meet the specific characteristics of individual subsystem architectures,
further tailoring may also need to be made on an individual subsystem-by-subsystem basis. How-
ever, care must be taken to avoid unnecessary subsystem-level tailoring in order to ensure an ade-
quate assessment of each selected subsystem’s architecture and to enable the assessment team to
obtain consistent and comparable assessment results.

68 CMU/SEI-2006-HB-001

− Tasks
The tasks performed during the different phases of the assessment can be tailored.
New tasks can be added, existing tasks can be deleted, and steps composing the tasks
can be added, deleted, or modified. Task durations can also be modified to fit the
schedule and resource availability.

− Teams
The teams performing these tasks can be tailored by adding new teams, combining
existing teams, deleting teams deemed unnecessary or unavailable, and modifying
existing teams’ responsibilities or membership.

− Work Products
The work products produced during these tasks and steps can be added, modified, or
deleted. Typical tailoring includes modifying the stakeholders for the assessments or
contents of documents.

Rationale: It is important that the assessment team and both the top-level requirements
and architecture teams agree on the architecture assessment method so that it benefits all
three teams. The method may need to be tailored to meet the specific needs of the pro-
ject or subsystem being assessed in order to be
− effective in terms of developing a correct assessment
− efficient in terms of effort required to perform the assessment
− feasible in terms of necessary staffing availability, funding, and schedule.

4. Manage action items.

Step: The assessment team collaborates with the top-level requirements and architecture
teams to collect, identify, and record any action items from the meeting. This includes
setting due dates and assigning action items to appropriate people. Examples of common
action items include the following:
− obtain any delayed input on assessment scope (e.g., availability of resources and in-

clusion of subsystems and related types of quality requirements)
− approve pending subsystem assessment schedules
− gather final input on assessment method tailoring from development organization

process engineering team
Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and tracked to completion.

Meeting Task Postconditions
This task is successfully completed when the following postconditions are met:

• The assessment scope has been determined.

• The initial assessment schedule has been set.

• The system architecture quality assessment has been tailored and agreed upon by the
attendees.

CMU/SEI-2006-HB-001 69

5.1.3 System Architecture Assessment Initiation –
Follow-Through

Follow-Through Task Objectives
The follow-through task of the system architecture assessment initiation phase has the fol-
lowing major objectives:

• Report meeting results. The results of the initial kickoff meeting are reported to stake-
holders.

• Ensure adequate support. By distributing the schedule and clarifying the responsibilities
and tasks of the various teams involved, the follow-through task helps to ensure that the
requirements reviews and architecture assessments are officially scheduled and re-
sources.

• Track action items. Action items identified during the system architecture assessment
initiation meeting are tracked to closure.

Follow-Through Task Duration
The duration of this task largely depends on the availability of the members of the assessment
and top-level architecture teams and can last anywhere from a few days to two weeks. Natu-
rally, completing this task should be a high priority so that the outputs can be distributed
while they remain fresh in everyone’s minds.

Meeting Task Preconditions
This task can be started when the following preconditions are met:

• The assessment scope has been determined.

• The initial assessment schedule has been set.

• The system architecture quality assessment has been tailored and agreed upon by the
stakeholders.

Follow-Through Task Steps
After the initial assessment kickoff meeting but prior to the first assessment, the following
steps are performed in a timely manner:

1. Produce, review, and present system architecture assessment initiation meeting out-
brief.

Step: Within a day or two of the initiation meeting and usually before leaving the site of
the meeting, complete the following steps:
a. The members of the assessment team (especially the scribe) provide the leader of

the assessment team with the team members’ meeting notes.
b. The leader of the assessment team produces an initial version of the initiation meet-

ing outbrief.
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the initiation meeting.

70 CMU/SEI-2006-HB-001

d. The leader of the assessment team iterates the outbrief to incorporate the comments
and recommendations of the assessment team members.

e. The leader of the assessment team presents the outbrief to the attendees and avail-
able stakeholders of the initiation meeting.

Rationale: It is important to provide an informal outbrief at the end of the system archi-
tecture assessment initiation meeting so that attendees and stakeholders do not wait sev-
eral weeks to obtain a clear overview of the results of the meeting.

2. Produce, review, and distribute system architecture assessment initiation meeting
minutes.

Step: Within a couple of weeks of the system architecture assessment initiation meeting,
complete the following steps:
a. Members of the assessment team provide their notes to the members of the team

tasked to produce the initiation meeting minutes.37
b. The members of the assessment team so tasked produce an initial version of the

meeting minutes.
c. The assessment team members review the meeting minutes to ensure that they cor-

rectly record the results of the initiation meeting.
d. The assessment team leader iterates the meeting minutes to incorporate the com-

ments and recommendations of the assessment team members.
e. The leader of the assessment team leader distributes the meeting minutes to stake-

holders, especially the meeting attendees.

Rationale: The consensus concerning the scope of the assessment developed during the
meeting needs to be officially documented to minimize the chance of confusion or po-
tential future repudiation by any attendees.

3. Tailor architecture assessment procedure.

Step: Within a couple of weeks of the system architecture assessment initiation meeting,
complete the following steps:
a. Using the initial kickoff meeting notes and other sources, assigned members of the

assessment team update the architecture assessment procedure and distribute the re-
sulting tailored version to members of the assessment team.

b. Members of the assessment team respond with comments and recommended
changes.

c. After iterating the architecture assessment procedure, the assessment team distrib-
utes the updated version of the architecture assessment procedure to the top-level
requirements and architecture teams, which forward the procedure to the other de-
velopment stakeholders such as the leads (or members) of the subsystem require-
ments and architecture teams.

37 A subset of the assessment team may be tasked to produce the entire requirement review meeting

minutes. On the other hand, the assessment team may be divided into pairs that are tasked to pro-
duce different subsections of the meeting minutes. The choice of approach may vary depending on
the size and formality of the requirements review meeting minutes, which could contain a signifi-
cant number of observations and recommendations. In fact, depending on the importance given to
the requirement review, a report may replace less formal meeting minutes.

CMU/SEI-2006-HB-001 71

d. The subsystem requirements and architecture teams respond with comments and
recommendations to the top-level requirements and architecture teams.

e. After organizing (and potentially passing judgment on) these comments and rec-
ommendations, the top-level requirements and architecture teams pass the approved
and organized comments and recommendations back to the assessment team.

f. The assessment team iterates the procedure.
g. Upon approval by the leader of the assessment team, the project-specific system ar-

chitecture assessment procedure is distributed to all stakeholders.

Rationale: Stakeholders (and especially participants) need to understand the method by
which the architectures will be assessed. They also need to be able to submit recom-
mended modifications for project-specific tailoring. However, the assessment method ul-
timately belongs to the assessment team, which determines the official project-specific
version of the method used.

4. Distribute schedule.

Step: The assessment team, the top-level requirements team, and top-level architecture
team distribute the assessment schedule to all stakeholders including managers and the
subsystem requirements and architecture teams.

Rationale: Stakeholders need to know the tentative schedule for the various subsystem
assessments so that they can plan other activities accordingly. Stakeholders also need to
ensure that the subsystem architecture quality assessments are scheduled to support ma-
jor system reviews such as PDRs.

5. Obtain needed resources.

Step: Estimate the resources needed to perform the assessments, officially fund and
schedule the initial assessments, and assign staff.

Rationale: Without proper funding, scheduling, and staffing, necessary resources will
not be available to perform the assessments, resulting in ineffectual assessments that
may not be held in time to effectively influence the system and subsystem architectures.

6. Track action items to completion.

Step: The assessment team tracks open action items to completion.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and tracked to completion.

7. Capture lessons learned.

Step: The assessment team collaborates with the system architecture team to capture les-
sons learned about the effectiveness of the system architecture assessment initiation
phase of the QUASAR method.

Rationale: This enables the method to be continually improved and tailored for future
system architecture assessment initiation meetings and for future projects.

72 CMU/SEI-2006-HB-001

8. Update assessment method and associated training materials.

Step: Based on the lessons learned, the project process team38 updates the project-
tailored QUASAR architecture assessment procedure and the associated QUASAR
training materials. Where appropriate, they also provide the SEI with the lessons learned
and updated procedure and training materials so that the official QUASAR documenta-
tion can be iterated.

Rationale: Updating the QUASAR method will enable the process to be improved for
future projects.

5.2 Subsystem Requirements Review Phase
Phase Objectives
The objectives of this phase is to ensure that the

• architecturally relevant quality goals and requirements are properly derived and allo-
cated to each subsystem for which the architecture is to be assessed

• subsystem architecture team understands what is expected from them during the subsys-
tem architecture assessment phase

Phase Duration
Whereas the subsystem requirements review meeting may only last one or two days, prepara-
tions may begin up to one month before the meeting; follow-through may last a few weeks
after the meeting.

Phase Tasks
During this phase, perform the following tasks for each subsystem (or other major element of
the architecture) to be assessed:

1. Subsystem Requirements Review – Preparation

The assessment team and subsystem architecture team prepare by exchanging and read-
ing relevant preparatory documentation.

2. Subsystem Requirements Review – Meeting

The subsystem architecture team demonstrates to the assessment team their knowledge
of the architecturally significant requirements and their understanding of what is ex-
pected of them during the coming assessment.

3. Subsystem Requirements Review – Follow-Through

The assessment team reports their findings and recommendations to the subsystem ar-
chitecture team and other stakeholders.

38 If an official “project process team” (e.g., system engineering process group [SEPG]) does not

exist, then whichever team, group, or individual that is filling the process engineer role should
perform this task.

CMU/SEI-2006-HB-001 73

Figure 14 illustrates the decomposition of Subsystem Requirements Review Phase into its
three tasks, their associated work products, and the associated teams that produce, use, and
update these work products.

5.2.1 Subsystem Requirements Review – Preparation
Preparation Task Objective
The objective of this task is to ensure that the members of the assessment team, subsystem
requirements team, and subsystem architecture team are properly prepared for the require-
ments review meeting.

Preparation Task Duration
The duration of this task largely depends on the availability of the members of the assessment
team, subsystem requirements team, and subsystem architecture team. This task typically
lasts up to one month. Although it takes time to produce and properly review the preparatory
materials, members of the teams should strive for the shortest practical duration so as to
maintain continuity and establish a proper sense of importance and urgency.

Preparation Task Preconditions
This task can be started when the quality requirements have been derived and allocated to a
subsystem, the architecture of which is to be assessed.

Preparation Task Steps
Prior to the subsystem requirements meeting, perform the following steps:

1. Train subsystem teams.

Step: Up to approximately one month prior to the requirements meeting, provide the as-
sessment team members of the subsystem requirements and subsystem architecture
teams with training in the tailored QUASAR system method so that they can properly
prepare for the meeting. As part of this training, the assessment team provides each
member of the subsystem requirements and subsystem architecture teams with a copy of
the architecture assessment procedure, the architecture assessment training materials,
and the subsystem requirements review.

Rationale: The members of the subsystem requirements and subsystem architecture
teams need to understand the method in which they will take part, especially their re-
sponsibilities including the steps they will perform and the work products they will need
to produce. Members of these two teams need to find adequate time to learn the method.

74 CMU/SEI-2006-HB-001

Preparation
Task

Meeting
Task

Subsystem
Requirements

Review
Meeting
Outbrief

Updated
Architecture
Assessment
Action Item

List

Architecture
Assessment
Procedure

Architecture
Assessment

Training
Materials

Subsystem
Requirements

Review
Meeting
Minutes

Follow-Through
Task

Subsystem
Requirements Review

Phase

Subsystem
Requirements

Review Meeting
Assessor Notes

Subsystem
Requirements

Review
Meeting
Agenda

Subsystem
Requirements

Review
Checklist

Subsystem
Requirements

Review
Preparatory

Materials

Subsystem
Requirements

Review
Presentation

Materials

Assessment
Team

Subsystem
Architecture Team

Subsystem
Requirements Team

Subsystem
Development Team

Figure 14: Subsystem Requirements Review Phase

2. Provide a requirements review checklist.

Step: The assessment team supplies the subsystem requirements and subsystem architec-
ture teams with the requirement review checklist that the assessment team will use dur-
ing the requirements review meeting.

Rationale: This will enable the subsystem requirements and subsystem architecture
teams to better prepare for the coming assessment.

3. Internally review quality goals and requirements.

Step: Approximately one month prior to the requirements meeting, the subsystem archi-
tecture team collaborates with the subsystem requirements team to ensure that all archi-
tecturally significant quality goals and requirements are properly derived and allocated

CMU/SEI-2006-HB-001 75

(i.e., traced) to their subsystems. The teams ensure that the architecturally significant re-
quirements are prioritized and scheduled for implementation based on criteria such as:
− criticality to users and the acquisition organization
− architectural and implementation difficulty and risk
− proper implementation order (For example, certain quality factors [e.g., security]

need to be built into the system early because they would require major changes to
the architecture if incorporated during later builds.)

Rationale: It is critical for the subsystem architecture team to understand the architec-
turally significant goals and requirements that will drive their architectures.

4. Develop and provide preparatory materials.

Step: Approximately three weeks prior to the requirements meeting, the subsystem re-
quirements and subsystem architecture teams develop the subsystem requirements re-
view preparatory materials. The subsystem requirements team collects (e.g., either
physically or via meta tags) and organizes these architecturally significant quality goals
and requirements to produce their part of the preparatory materials. The subsystem ar-
chitecture team generates a partial, representative architecture quality case including
claims, arguments, and evidence. Both teams provide the preparatory material to the as-
sessment team. The subsystem architecture team also provides the assessment team with
read-only access to the relevant derived and allocated architecturally significant quality
goals and requirements in its requirements repository.

Rationale: By providing the assessment team with the subsystem requirements review
preparatory materials at least three weeks prior to the review, the assessment team has
sufficient time to familiarize themselves with the materials. This will make the assess-
ment team more effective and efficient at the actual review meeting, thereby enabling
the meeting to be shorter in duration. In turn, this will enable the members of the subsys-
tem requirements and subsystem architecture teams to spend less time away from their
primary work of engineering requirements and architecting the subsystem.

5. Develop and provide presentation materials.

Step: During the weeks immediately before the requirements meeting, the subsystem re-
quirements and subsystem architecture teams develop the presentation materials and
provide them to the members of the assessment team.

Rationale: The rationale for providing early access to the subsystem requirements re-
view presentation materials is similar to that for the preparatory materials.

6. Become familiar with the subsystem.

Step: The assessment team properly prepares for the requirements review meeting by
reading the preparatory and presentation materials provided by the subsystem require-
ments and architecture teams. The assessment team familiarizes themselves with the
subsystem and its architecturally significant quality goals and requirements. They as-
sessment team also familiarizes themselves with the architectural quality cases that the

76 CMU/SEI-2006-HB-001

subsystem architecture team intends to present during the subsystem architecture as-
sessment phase.

Rationale: By familiarizing themselves with the subsystem, its relevant quality goals
and requirements, and the maturity of the architecture team’s intended quality cases
prior to the requirements meeting, the assessment team can be more efficient and effec-
tive during the meeting.

7. Organize the meeting.

Step: At least two weeks prior to the subsystem requirements review meeting, the as-
sessment team, subsystem requirements team, and subsystem architecture team collabo-
rate to complete the following tasks:
a. Identify meeting attendees and other stakeholders.

Substep: The assessment, subsystem requirements, and subsystem architecture
teams collaborate to develop a list of meeting attendees and other stakeholders who
should receive copies of the subsystem requirements review meeting preparatory
and presentation materials.
Rationale: It is important to ensure that no significant stakeholder is overlooked.

b. Set time and location.
Substep: The assessment, subsystem requirements, and subsystem architecture
teams collaborate to set an exact time and location (e.g., address, building number,
and room number) for the subsystem requirements review meeting.
Rationale: Attendees need an exact time and place to avoid schedule conflicts and
make necessary arrangements.

c. Develop meeting agenda.
Substep: The assessment, subsystem requirements, and subsystem architecture
teams collaborate to produce a meeting agenda covering the relevant quality fac-
tors, associated quality goals and requirements, sample quality cases, and meeting
wrap-up (e.g., status of action items and assignment of final new action items).
Rationale: Agendas enable attendees to identify the most important parts of the
meeting.

d. Invite stakeholders.
Substep: The assessment team sends invitations including the meeting agenda to the
identified meeting attendees and other stakeholders.
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas.

Preparation Task Postconditions
This task is successfully completed when the following postconditions are met:

• The subsystem requirements and architecture teams have been trained in the assessment
method.

CMU/SEI-2006-HB-001 77

• The subsystem quality requirements have been derived, prioritized, and allocated to the
subsystem.

• The subsystem requirements review preparatory and presentation materials have been
developed and provided to the assessment team.

• The assessment team has become familiar with the subsystem and the associated pre-
paratory and presentation materials.

• The subsystem requirements review meeting has been organized.

5.2.2 Subsystem Requirements Review – Meeting
Meeting Task Objectives
The objectives of this task are to ensure that the

• quality requirements have been properly derived and allocated to the subsystem

• assessment team understands what is expected of them during the following Subsystem
Architecture Assessment Phase

Meeting Task Duration
This task usually only lasts one day per subsystem, but it may vary depending on the number
of subsystem quality requirements and the preparedness of the subsystem architecture team.

Meeting Task Preconditions
This task can be started when the following preconditions are met:

• The subsystem requirements and architecture teams have been trained in the assessment
method.

• The subsystem quality requirements have been derived, prioritized, and allocated to the
subsystem.

• The subsystem requirements preparatory and presentation materials have been devel-
oped and provided to the assessment team.

• The assessment team has become familiar with the subsystem and the associated pre-
paratory and presentation materials.

• The subsystem requirements review meeting has been organized.

• Action items have been identified, assigned, and scheduled.

Meeting Task Steps
Perform the following steps during each requirements review meeting:

1. Present quality factors.

Step: The subsystem architecture team demonstrates to the assessment team their under-
standing of the architecturally significant quality factors.

78 CMU/SEI-2006-HB-001

Rationale: Misunderstandings concerning the definition and relative importance of the
quality factors is not uncommon. It is critical to forge a consensus between the require-
ments team, architecture team, and assessment team as to the architecturally significant
quality factors, subfactors, and their meanings.

2. Present quality requirements.

Step: The subsystem requirements team presents a summary of the architecturally sig-
nificant quality requirements to the assessment team. The subsystem requirements team
also presents their prioritization and scheduling of implementation of these require-
ments. The assessment team raises any concerns they might have that this prioritization
and scheduling of requirements may not
− be consistent with the needs of the users and acquisition organization
− minimize architectural risks
Rationale: This is a good time to ensure that the architecture team understands the ar-
chitecturally significant quality requirements. This step also gives the assessment team
confidence that the architects will incorporate these requirements into the subsystem ar-
chitecture. It is critical that architectural implementation be properly scheduled in terms
of
− criticality to users and the acquisition organization
− architecture and implementation difficulty and risk
− proper implementation order (For example, certain quality factors [e.g., security]

need to be built into the system early because they would require major changes to
the architecture if incorporated during later builds.)

3. Present sample quality case information.

Step: The subsystem architecture team presents a small representative sample of the
kind of quality case information they intend to present during the following Subsystem
Architecture Assessment Phase. They demonstrate to the assessment team that they un-
derstand what is expected of them during the coming assessment meeting by giving a
few brief representative examples of their intended arguments that their architecture will
meet its allocated quality-related requirements (i.e., list some important architectural de-
cisions that support these requirements) and associated evidence (e.g., official documen-
tation of these architectural decisions).

Rationale: Misunderstandings concerning the proper contents of quality cases are not
uncommon. This step gives the assessment team confidence that the architects will pro-
vide proper quality cases during the following architecture assessment phase.

4. Provide guidance.

Step: The assessment team gives the subsystem requirements team recommendations for
improving the quality (e.g., completeness, lack of ambiguity, and verifiability) of the
quality requirements. The assessment team gives the architecture team recommendations
for improving their proposed quality cases (e.g., arguments and evidence). For example,
they should avoid using plans and development processes as “arguments” and planning

CMU/SEI-2006-HB-001 79

and procedures documents as “evidence.” These documents are inappropriate because
they are not architectural decisions and not documentation of architectural decisions.
The assessment team also answers any questions that members of the subsystem re-
quirements and architecture teams might have (e.g., regarding quality cases and the
coming architecture assessment meeting).

Rationale: In spite of training provided during the preceding subsystem requirements
review preparation task, members of the requirements team can often benefit from guid-
ance regarding the proper form of quality requirements, which will enable them to im-
prove the requirements before the architecture team creates the subsystem architecture.
Similarly, the architecture team’s need for guidance in the proper form and content of
quality cases is often only clear once they present their initial representative examples of
quality cases.

5. Determine special assessment team staffing needs.

Step: The assessment team and subsystem architecture team collaborate to determine if
the assessment team needs to be augmented with members having particular expertise
such as specialty engineering expertise (e.g., reliability, safety, or security engineering)
or expertise in important application domains (e.g., communications or sensor technol-
ogy).

Rationale: It is important that the assessment team include members with adequate
training and experience to properly assess the architecture of the subsystem, including
people with both specialty engineering or application domain expertise. The subsystem
architecture team can best identify any important application domains that apply to their
subsystem.

6. Schedule coming events.

Step: The assessment team and subsystem architecture team collaborate to schedule the
coming assessment meeting and its associated preparation steps (e.g., dates by which the
architecture team will provide the assessment team with advanced access to their argu-
ments and evidence).

Rationale: Scheduling enables stakeholders to update their schedules and avoid sched-
ule conflicts.

7. Manage action items.

Step: The assessment team collaborates with the subsystem requirements and subsystem
architecture teams to collect, identify, and record any action items from the meeting.
This includes setting due dates and assigning the action items to appropriate people. Ex-
amples of common action items include
− Members of the subsystem requirements team and subsystem architecture team are

assigned requests for information (RFI) and requests for action (RFA) by the assess-
ment team.

80 CMU/SEI-2006-HB-001

− The assessment team members are assigned the tasks of supplying their requirements
review meeting notes to the team scribe.

− The assessment team leader is assigned the tasks of producing the subsystem re-
quirements review outbrief.

− The assessment team members are assigned the task of reviewing the outbrief before
it is presented to the subsystem requirements team, subsystem architecture team, and
any other meeting attendees or stakeholders (e.g., managers and members of the top-
level architecture team).

− The assessment team leader presents the outbrief to the meeting attendees and any
other interested stakeholders.

− Assessment team members are assigned the tasks of producing, reviewing, and dis-
tributing the subsystem requirements review meeting minutes.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and properly tracked to
completion.

Meeting Task Postconditions
This task is successfully completed when the following postconditions are met:

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements.

• The subsystem architecture team has presented sample subsystem quality cases.

• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams.

• The meeting attendees have collaborated to determine if any special assessment staffing
needs exist.

• The subsystem architecture assessment meeting has been scheduled.

5.2.3 Subsystem Requirements Review – Follow-Through
Follow-Through Task Objective
The objectives of this task are to ensure that the

• requirements review outbrief is produced and presented to the relevant stakeholders

• meeting minutes are produced and distributed to relevant stakeholders

• action items are tracked to completion

Follow-Through Task Duration
This task usually takes

• several days, depending on staffing availability, to complete the meeting minutes

• a few weeks to track action items to completion, depending on the number and type of
action items

CMU/SEI-2006-HB-001 81

Follow-Through Task Preconditions
This task can be started when the following preconditions are met:

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements.

• The subsystem architecture team has presented sample subsystem quality cases.

• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams.

• The meeting attendees have collaborated to determine if any special assessment staffing
needs exist.

• The subsystem architecture assessment meeting has been scheduled.

Follow-Through Task Steps
After each requirements review meeting but before the associated architecture assessment
meeting, the following steps are performed in a timely manner:

1. Produce, review, and present requirements review outbrief.

Step: Within a day or two of the requirements review meeting and before leaving the site
of the requirements review
a. The members of the assessment team (especially the assessment team scribe) pro-

vide the leader of the assessment team with their meeting notes.
b. The leader of the assessment team produces an initial version of the requirement

review outbrief.
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the subsystem requirements review.
d. The leader of the assessment team iterates the requirements review outbrief to in-

corporate the comments and recommendations of the assessment team members.
e. The leader of the assessment team presents the outbrief to the attendees and avail-

able stakeholders of the subsystem requirements review.

Rationale: It is important to provide an informal outbrief at the end of the requirements
review meeting so that attendees and stakeholders need not wait several weeks to obtain
a clear indication of the results of the meeting.

2. Produce, review, and distribute requirements review meeting minutes.

Step: Within a couple of weeks of the requirements review meeting
a. Members of the assessment team provide their notes to the members of the team

tasked to produce the requirements review meeting minutes.39

39 A subset of the assessment team may be tasked to produce the entire requirement review meeting

minutes. On the other hand, the assessment team may be divided into pairs which are tasked to
produce different subsections of the meeting minutes. The choice of approach may vary depending
on the size and formality of the requirements review meeting minutes, which could contain a sig-
nificant number of observations and recommendations. In fact, depending on the importance given
to the requirement review, a report may replace less formal meeting minutes.

82 CMU/SEI-2006-HB-001

b. The selected members of the assessment team produce an initial version of the re-
quirements review meeting minutes.

c. The assessment team members review the requirements review meeting minutes to
ensure that they correctly record the results of the subsystem requirements review.

d. The assessment team leader iterates the requirements review meeting minutes to in-
corporate the comments and recommendations of the assessment team members.

e. The leader of the assessment team leader distributes the requirements review meet-
ing minutes to stakeholders.

Rationale: It is important to document relevant observations and agreements (e.g.,
schedule dates) in a form available to all relevant stakeholders.

3. Track action items to completion.

Step: The assessment team tracks open action items to completion.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and properly tracked to
completion.

4. Capture lessons learned.

Step: The assessment team collaborates with the subsystem requirements and subsystem
architecture teams to capture lessons learned about the effectiveness of the subsystem
requirements review phase of the QUASAR assessment.

Rationale: This enables the method to be continually improved and tailored for future
subsystem requirements reviews and use on future projects.

5. Update assessment method and associated training materials.

Step: Based on the lessons learned, the project process team40 updates the project-
tailored QUASAR assessment procedure and the associated QUASAR training materi-
als. Where appropriate, they also provide the SEI with the lessons learned and updated
procedure and training materials so that the official QUASAR documentation can be it-
erated.

Rationale: Updating the QUASAR enables the process to be improved on future subsys-
tem requirements reviews and other projects.

Follow-Through Task Postconditions
This task is successfully completed when the following postconditions are met:

• The subsystem requirements team has presented the subsystem quality factors and asso-
ciated subsystem quality requirements.

• The subsystem architecture team has presented sample subsystem quality cases.

40 If an official “project process team” (e.g., system engineering process group [SEPG]) does not

exist, then whichever team, group, or individual that is filling the process engineer role should
perform this task.

CMU/SEI-2006-HB-001 83

• The assessment team has provided guidance to the subsystem requirements and architec-
ture teams.

• The meeting attendees have collaborated to determine if any special assessment staffing
needs exist.

• The subsystem architecture assessment meeting has been scheduled.

• Open action items have been tracked to completion.

5.3 Subsystem Architecture Assessment Phase
Phase Objective
The objective of this phase is to assess the quality of a subsystem architecture in terms of its
derived and allocated architecturally significant requirements.

Phase Duration
The duration of this phase typically lasts a few weeks, with most of the time being spent on
preparation and follow-through, rather than on the actual assessment meeting, which should
last only one or two days.

Phase Tasks
As illustrated in Figure 15, perform the following tasks for each subsystem (or other major
element of the architecture) to be assessed:

1. Subsystem Architecture Assessment – Preparation

The assessment team prepares by exchanging and reading relevant documentation pro-
vided by the subsystem architecture team.

2. Subsystem Architecture Assessment – Meeting

The subsystem architecture team presents to the assessment team quality cases showing
that their architecture adequately supports its relevant architecturally significant re-
quirements.

3. Subsystem Architecture Assessment – Follow-Through

The assessment team reports their findings and recommendations to the subsystem ar-
chitecture team and other stakeholders.

5.3.1 Subsystem Architecture Assessment – Preparation
Meeting Task Objectives
The objectives of this task are as follows:

• The architecture team presents their quality cases to the assessment team.

• The assessment team actively questions the architecture team to identify

84 CMU/SEI-2006-HB-001

− architecture defects and weaknesses (both by commission and omission)
− architectural risks

Preparation Task Duration
The duration of this task is typically a few weeks per subsystem. Note that preparation does
not include developing the subsystem architecture, which should naturally include the devel-
opment of the architects’ arguments (architectural decisions including rationales) and result in
documentation that will become the quality case evidence. That being said, the duration may
still vary depending on the

• size and complexity of the subsystem architecture

• number of quality cases to be developed and presented

• amount of preparatory materials to be produced and read

• skill, expertise, and productivity of the teams involved

Preparation
Task

Meeting
Task

Subsystem
Architecture
Assessment

Meeting
Outbrief

Updated
Architecture
Assessment
Action Item

List

Subsystem
Architecture
Assessment

Report

Follow-Through
Task

Subsystem
Architecture Assessment

Phase

Subsystem
Architecture
Assessment

Meeting
Assessor Notes

Subsystem
Architecture
Assessment

Meeting
Agenda

Subsystem
Architecture
Assessment

Checklist

Subsystem
Architecture
Assessment
Preparatory

Materials

Subsystem
Architecture
Assessment
Presentation

Materials

Assessment
Team

Top-Level
Architecture Team

Architecture
Team

Subsystem
Architecture

Support
Matrix

Subsystem
Architecture Team

Architecture
Assessment

Training
Materials

Architecture
Assessment
Procedure

Figure 15: Subsystem Architecture Assessment Phase

CMU/SEI-2006-HB-001 85

Preparation Task Preconditions
This task can be started when the subsystem architecture is sufficiently complete and mature
enough to be assessed.

Preparation Task Steps
Prior to each subsystem architecture assessment meeting, perform the following steps:

1. Provide architecture assessment checklist.

Step: The assessment team supplies the subsystem architecture team with the architec-
ture assessment checklist that they will use during the assessment.

Rationale: This enables the subsystem architecture team to better prepare for the com-
ing assessment.

2. Generate preparatory materials including architecture quality cases.

Step: The subsystem architecture team develops the subsystem architecture assessment
preparatory materials.

Rationale: These materials help the assessment team better prepare for the assessment
meeting.
a. Gather subsystem architecture overview.

Substep: The subsystem architecture team gathers (or generates if necessary) an
overview of the subsystem architecture (e.g., architecture training material).
Rationale: An architecture overview helps the assessment team better understand
the subsystem architecture team’s quality cases.

b. Gather updated quality requirements.
 Substep: The subsystem architecture team gathers any updates to the architecturally

significant requirements that are derived and allocated to the subsystem.
Rationale: Such requirements drive the architecture and associated quality cases.
The assessment team may not know about changes that have occurred since the
subsystem requirements review.

c. Gather quality cases.
Substep: The subsystem architecture team gathers (or generates if necessary41) the
architecture quality cases for each appropriate quality factor and quality subfactor.
Rationale: The most important part of the subsystem architecture assessment pre-
paratory materials are the quality cases. The assessment team needs to have these

41 Optimally, the architects should incrementally develop and document their architecture quality

cases as they architect subsystems. Specifically, arguments and associated evidence should be cre-
ated as a natural part of the architectural documentation. Unfortunately, most architectural docu-
mentation does not adequately document the decisions that the architects made to achieve ade-
quate quality and the associated rationales. Even if the information exists, it is often scattered
throughout large amounts of other architectural information, making it difficult for the assessors to
access.

86 CMU/SEI-2006-HB-001

early in order to prepare for the meeting (e.g., develop questions for the subsystem
architecture team).
− Gather claims.

Substep: Based on the relevant quality factors and subfactors, the subsystem ar-
chitecture team gathers (or generates) claims that their architecture adequately
supports achieving its allocated quality goals and meets its associated allocated
and derived quality-related requirements.
Rationale: The assessment team needs to clearly understand the architects’
claims if they are to decide if the arguments and supporting evidence justify be-
lief in the claims. In other words, the assessors need to know how good the archi-
tecture has to be.

− Generate arguments.
Substep: The subsystem architecture team generates clear and compelling argu-
ments as to why their architecture adequately supports its allocated and derived
quality-related requirements.
Rationale: The arguments are the key to the quality case, informing the assessors
of the architectural decisions and their rationales. The assessment team cannot
adequately assess the quality of the architecture without hearing these arguments.

− Gather supporting evidence.
Substep: The subsystem architecture team collects and organizes official evi-
dence supporting their arguments. They provide an index, pointers, or some other
means to identify the relevant information.
Rationale: The assessment team needs to sample a representative collection of
the evidence to ensure that the architecture decisions documented in the argu-
ments actually exist. These evidentiary diagrams, models, and documents pro-
vide insight into the architecture beyond the arguments, enabling the assessment
team to understand the strengths and weaknesses of the architecture’s support for
the various types of quality requirements.

3. Develop subsystem architecture presentation materials.

Step: The subsystem architecture team develops the materials that they are going to pre-
sent to the assessment team during the subsystem architecture assessment meeting.

Rationale: The presentation materials are provided to the assessment team prior to the
assessment to help them prepare, making the actual assessment meeting more effective
and productive.
a. Create a brief subsystem architecture overview.

Substep: The subsystem architecture team generates a very brief presentation over-
view of the subsystem architecture. It summarizes the subsystem introduction con-
tained in the subsystem preparation materials.
Rationale: During the subsystem architecture assessment meeting, a very brief ar-
chitecture overview helps the assessment team understand the subsystem architec-
ture team’s quality cases. This is especially helpful for attendees who did not read
the preparatory materials.

b. Create a brief summary of the architecture quality cases.
Substep: On a quality factor-by-quality factor basis, the subsystem architecture
team generates a brief summary presentation of each architecture quality case.

CMU/SEI-2006-HB-001 87

Rationale: Due to time constraints, the subsystem architecture team presents a brief
summary of the architecture quality cases to the assessment team during the subsys-
tem architecture assessment meeting. The subsystem architecture team also pro-
vides the assessment team access to these summary quality cases ahead of the meet-
ing, so that the meeting is effective and productive.

4. Make preparatory and presentation materials available.

Step: The subsystem architecture team provides the assessment team with electronic ac-
cess to their architecture assessment preparatory and presentation materials the agreed
upon number of weeks (typically two to three) prior to the architecture assessment meet-
ing.

Rationale: The members of the assessment team require adequate lead time to read the
preparatory and presentation meetings materials.

5. Obtain and read preparatory and presentation materials.

Step: Prior to the subsystem architecture assessment meeting, the assessment team ob-
tains and reads the architecture team’s preparatory and presentation materials.

Rationale: This enables the assessment team to properly prepare for the assessment.

6. Submit preliminary RFIs and RFAs.

Step: Prior to the subsystem architecture assessment meeting, and based on their review
of the preparatory and presentation materials, members of the assessment team poten-
tially develop and submit to the subsystem architecture team RFIs and RFAs. RFIs usu-
ally consist of questions and requests for clarifications of the architecture quality cases
and RFAs are requests for additional evidence or pointers to relevant parts of large and
complex evidentiary documentation.

Rationale: This enables the subsystem architecture team to supply the requested infor-
mation either prior to or during the subsystem architecture assessment meeting.

7. Organize the meeting.

Step: At least two weeks prior to the subsystem architecture assessment meeting, the as-
sessment team and subsystem architecture team collaborate to
a. Identify meeting attendees and other stakeholders.

Substep: The assessment team and subsystem architecture team develop a list of
meeting attendees and other stakeholders who should receive copies of the meeting
preparatory and presentation materials.
Rationale: It is important to ensure that no significant stakeholder is overlooked.

b. Set time and location.
Substep: The assessment team and subsystem architecture team determine an exact
time and location (e.g., address, building number, and room number) for the sub-
system architecture assessment meeting.
Rationale: Attendees need an exact time to avoid schedule conflicts.

88 CMU/SEI-2006-HB-001

c. Develop meeting agenda.
Substep: The assessment team and subsystem architecture team set up a meeting
agenda that covers introducing the subsystem, reviewing the requirements, intro-
ducing the architecture, presenting and probing the individual quality cases, and
wrapping up the meeting by assigning action items.
Rationale: Agendas are important to enable attendees to determine if they must at-
tend only certain parts of the meeting (e.g., reliability, safety, and security specialty
engineers may only need to attend during the presentation of the associated safety
cases).

d. Invite stakeholders.
Substep: The assessment team sends invitations including the meeting agenda to the
identified meeting attendees and other stakeholders.
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas.

Preparation Task Postconditions
This task is successfully completed when the following postconditions are met:

• The subsystem architecture team is ready for the subsystem architecture assessment
meeting when
− The subsystem architecture team has received the architecture assessment checklist.
− The subsystem architecture team has generated architecture assessment preparatory

and presentation materials.
• The assessment team is ready for the subsystem architecture assessment meeting when

− The assessment team had obtained and read the preparatory and presentation materi-
als generated by the subsystem architecture team.

− The assessment team has submitted any preliminary RFIs and RFAs to the subsystem
assessment team.

• The subsystem architecture assessment meeting is organized.

5.3.2 Subsystem Architecture Assessment – Meeting
Meeting Task Objectives
The objectives of this task are as follows:

• Present quality cases. The architecture team presents their quality cases to the assess-
ment team.

• Probe architecture. The assessment team actively questions the architecture team to
identify
− architecture defects and weaknesses (both by commission and omission)
− architectural risks

CMU/SEI-2006-HB-001 89

Meeting Task Duration
The duration of this task is typically one day per subsystem (or two hours per quality factor).
However, the duration may vary depending on the

• size and complexity of the subsystem architecture

• number of quality cases presented

• number of architectural defects and risks found

• skill, expertise, and productivity of the teams involved

Meeting Task Preconditions
This task can be started when the following preconditions are met:

• The subsystem architecture team is ready for the subsystem architecture assessment
meeting when
− The subsystem architecture team has received the architecture assessment checklist.
− The subsystem architecture team has generated architecture assessment preparatory

and presentation materials.
• The assessment team is ready for the subsystem architecture assessment meeting when

− The assessment team has obtained and read the preparatory and presentation materi-
als generated by the subsystem architecture team.

− The assessment team has submitted any preliminary RFIs and RFAs to the subsystem
assessment team.

• The subsystem architecture assessment meeting is organized.

Meeting Task Steps
During each architecture assessment meeting, perform the following steps:

1. Introduce the subsystem.

Step: The subsystem architecture team presents to the assessment team a brief introduc-
tion to the subsystem. This introduction includes the
− primary purpose of the subsystem
− placement of the subsystem is in the overall hierarchy of the system architecture

(e.g., composition diagram)
− context of the subsystem, including the other subsystems with which it interfaces

(e.g., a context diagram)
− primary functions that are allocated to the subsystem
Rationale: This step helps to set the stage for the following steps and ensures that the
assessment team members truly understand the basics of the subsystem.

2. Review the requirements.

Step: The subsystem architecture team presents to the assessment team a brief review of
the architecturally significant quality requirements that drive the architecture of the sub-
system. They concentrate on the

90 CMU/SEI-2006-HB-001

− quality factors important to the subsystem including their relative priorities and con-
flicts

− associated goals that have been derived and allocated to the subsystem
− critical quality requirements
Rationale: This step reminds everyone of the quality factors driving the architecture de-
cisions made by the architecture team. It provides an overview of the content of the
quality case claims and the motivation for the quality case arguments.

3. Introduce the architecture.

Step: The subsystem architecture team presents to the assessment team a brief introduc-
tion of the architecture of the subsystem including the
− main components of the subsystem including name and purpose
− major relationships between these components of the subsystem and with external

subsystems, systems, and users
− overview of the most important architecture decisions and their rationales
− major engineering tradeoffs made to support conflicting quality factors
Rationale: If members of the assessment team do not get an overview of the architecture
and its key decisions before delving into the individual quality cases, there is a danger of
“missing the forest for the trees.” Because individual quality cases are specific to indi-
vidual quality factors, this is the appropriate step for assessing the tradeoffs the archi-
tects had to make between conflicting quality factors (e.g., increasing security may de-
crease performance). This is also when the assessment team determines if the architects’
“story” of the architecture is cohesive and consistent.

The remaining steps are performed once for each quality factor on a quality case-by-quality
case basis.

1. Present individual quality cases.

Step: The subsystem architecture team presents to the assessment team their individual
quality cases, including the following components for each quality case:
a. Brief Summary

A brief summary of the quality case (e.g., quality case diagram)
b. Claims

The architects’ claims consist of quality goals and requirements sufficiently sup-
ported by their architecture decisions. Goals can be that the architecture provides a
sufficient amount of a specific quality factor (e.g., performance) or quality subfac-
tor (e.g., response time or throughput). Requirements should be explicitly stated
rather than merely referencing requirements identifiers.

c. Arguments
The architects present clear and compelling arguments that their architecture justi-
fies belief in their claims. Arguments consist of their architectural decisions and as-
sociated rationales. Rationales should also include any specific engineering trade-
offs they made to support conflicting quality factors.

CMU/SEI-2006-HB-001 91

d. Evidence
The architects present official evidence supporting their arguments. Evidence typi-
cally consists of diagrams and references to relevant parts of models and docu-
ments. Evidence can also consist of demonstrations witnessed by members of the
assessment team.42

Rationale: This is the key step of the architecture assessment when the architecture team
attempts to convince the assessment team that their architecture is good enough to pass
the assessment. It presents the quality cases in a logical structure that emphasizes its key
components and their relationships.

2. Probe the architecture.

Step: The assessment team probes the architecture and quality cases, looking for archi-
tecture defects and weaknesses (both by commission and omission), architecture risks,
and potential areas of improvement. Based on their reading the preparatory materials
and the presentations made during the meeting, the assessment team asks members of
the subsystem architecture team probing questions to
− clarify or expand on their arguments
− display specific evidence backing up their arguments
− clarify engineering tradeoffs made to support quality requirements for conflicting

quality factors
− dive deeper into certain areas of the architecture (e.g., lower level tiers and subsys-

tems)
− use one or more scenarios as test cases to test the architecture’s support for a quality

requirement
− provide additional arguments and evidence43
Rationale: A natural tendency for the subsystem architecture team is to concentrate on
the strengths of their architecture when presenting quality cases. It is important for the
assessment team to help the subsystem architecture team identify any defects and weak-
nesses in their architecture early when they are easier and less expensive to fix. This is
especially true of missing architecture decisions (i.e., omission), which are easy for the
subsystem architecture team to overlook.

3. Manage action items.

Step: The assessment team collaborates with the subsystem architecture team to collect,
identify, and record action items. This includes setting due dates and assigning the action
items to appropriate people. Typical meeting action items include

42 Demonstrations often occur later, for instance during a visit to a development laboratory.

43 Depending on the additional information requested, the architecture team may be able to provide
this information immediately, later during the meeting, or during the following Follow-Through
task.

92 CMU/SEI-2006-HB-001

− Members of the subsystem architecture team are assigned RFIs and RFAs by the as-
sessment team (e.g., finding and providing missing arguments and evidence to the as-
sessment team).

− The assessment team members are assigned the tasks of supplying their assessment
notes to the assessment team scribe.

− The assessment team leader is assigned the task of producing the assessment outbrief.
− The assessment team members are assigned the task of reviewing the outbrief before

it is presented to the subsystem architecture team and any other meeting attendees or
stakeholders (e.g., managers, members of the top-level architecture team, and mem-
bers of the subsystem requirements team).

− The assessment team leader presents the outbrief to the meeting attendees and other
interested stakeholders.

− Assessment team members are assigned the tasks of producing, reviewing, and dis-
tributing the subsystem architecture assessment report.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and tracked to completion.

Meeting Task Postconditions
This task is successfully completed when the following postconditions are met:

• The subsystem architects have presented an introduction of their subsystem to the as-
sessment team.

• The subsystem architects have presented a review of the relevant quality requirements to
the assessment team.

• The subsystem architects have presented an introduction of their subsystem architecture
to the assessment team.

• The subsystem architects have presented their quality cases to the assessment team.

• The assessment team has probed the subsystem architecture.

• Action items have been captured, assigned, and scheduled.

5.3.3 Subsystem Architecture Assessment – Follow-Through
Follow-Through Task Objectives
The objectives of this task are to

• Develop a Consensus

The assessment team develops a consensus regarding the quality of the subsystem archi-
tecture.

• Present a Meeting Outbrief

The assessment team presents an outbrief of the assessment results to the meeting atten-
dees.

CMU/SEI-2006-HB-001 93

• Produce Final Subsystem Architecture Assessment Report

The assessment team produces a final version of the subsystem architecture assessment
report.

• Track Action Items

Action items from the subsystem architecture assessment are tracked to completion.

• Capture Lessons Learned

Lessons learned regarding the subsystem architecture assessment phase are captured.

• Update Assessment Method and Training Materials

The lessons learned are used to update the system architecture assessment method and
its associated training materials.

Follow-Through Task Duration
The duration of this task usually a few weeks, with the majority of the effort spent on the de-
velopment of the assessment report.

Follow-Through Task Preconditions
This task can be started when the following preconditions are met:

• The subsystem architects have presented an introduction of their subsystem to the as-
sessment team.

• The subsystem architects have presented a review of the relevant quality requirements to
the assessment team.

• The subsystem architects have presented an introduction of their subsystem architecture
to the assessment team.

• The subsystem architects have presented their quality cases to the assessment team.

• The assessment team has probed the subsystem architecture.

• Action items have been captured, assigned, and scheduled.

Follow-Through Task Steps
After each subsystem architecture assessment meeting, the following steps are performed in a
timely manner:

1. Pool, discuss, and obtain consensus on observations and recommendations.

Step: Once the subsystem architecture assessment meeting is over and the architects
have left the room, the meeting attendees on a quality case-by-quality case basis use
their meeting notes as a basis to pool and discuss their observations and recommenda-
tions.

Rationale: It is important for the meeting attendees to discuss their observations and
recommendations while they are still fresh in everyone’s minds. This enables them to
develop a consensus concerning how well the architecture assessed supports its allocated

94 CMU/SEI-2006-HB-001

quality-related requirements. This, in turn, forms the basis for the contents of the meet-
ing outbrief and report.

2. Produce, review, and present subsystem architecture assessment outbrief.

Step: Within a day or two of the subsystem architecture assessment meeting and before
leaving the site of the meeting:
a. The members of the assessment team (especially the assessment team scribe) pro-

vide the leader of the assessment team with meeting notes.
b. The leader of the assessment team produces an initial version of the subsystem ar-

chitecture assessment outbrief.
c. The assessment team members review the outbrief to ensure that it correctly sum-

marizes the results of the subsystem architecture assessment.
d. The leader of the assessment team iterates the subsystem architecture assessment

outbrief to incorporate the comments and recommendations of the assessment team
members.

e. The leader of the assessment team presents the outbrief to the attendees and avail-
able stakeholders of the subsystem architecture assessment.

Rationale: It is important to provide an informal outbrief at the end of the subsystem ar-
chitecture assessment meeting so that attendees and stakeholders need not wait several
weeks to obtain a clear indication of the results of the meeting.

3. Produce, review, and distribute subsystem architecture assessment report.

Step: Within a couple of weeks of the subsystem architecture assessment meeting, com-
plete the following steps:
a. Members of the assessment team provide their notes to the members of the team

tasked to produce the subsystem architecture assessment report.44
b. Selected members of the assessment team produce an initial version of the subsys-

tem architecture assessment report.
c. The assessment team members review the subsystem architecture assessment report

to ensure that it correctly records the results of the subsystem architecture assess-
ment.

d. The leader of the assessment team iterates the subsystem architecture assessment
report to incorporate the comments and recommendations of the assessment team
members.

e. The assessment team distributes the subsystem architecture assessment report to its
stakeholders.

Rationale: This is the primary output of this phase and forms the basis of the system ar-
chitecture quality assessment summary report.

44 A subset of the assessment team may be tasked to produce the entire subsystem architecture as-

sessment report. On the other hand, the assessment team may be divided into pairs which are
tasked to produce different subsections of the meeting report. The choice of approach may vary
depending on the size and formality of the subsystem architecture assessment meeting report,
which could contain a significant number of observations and recommendations.

CMU/SEI-2006-HB-001 95

4. Track action items to completion.

Step: The assessment team tracks open action items to completion.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and tracked to completion.

5. Capture lessons learned.

Step: The assessment team collaborates with the subsystem architecture team to capture
lessons learned about the effectiveness of the subsystem architecture assessment phase
of the QUASAR method.

Rationale: This enables the method to be continually improved and tailored for future
subsystem assessments and use on future projects.

6. Update assessment method and associated training materials.

Step: Based on the lessons learned, the project process team45 updates the project-
tailored QUASAR procedure and the associated QUASAR training materials. Where
appropriate, they also provide the SEI with the lessons learned and updated procedure
and training materials so that the official QUASAR documentation can be iterated.

Rationale: Updating the QUASAR method enables the process to be improved on future
subsystem architecture assessment phases and future projects.

Follow-Through Task Postconditions
This task is successfully completed when the following postconditions are met:

• The assessment team has presented the subsystem architecture assessment outbrief to
attendees of the meeting.

• The assessment team has completed the subsystem architecture assessment report and
distributes it to its stakeholders.

• Action items from the meeting have been tracked to completion.

• Lessons learned about the assessment method have been incorporated into the method
and associated training materials.

5.4 System Architecture Assessment Summary
Phase

Depending on the approach chosen to summarize the results of the overall architecture qual-
ity assessment, a system architecture assessment summary phase occurs

• once, at the end of the QUASAR assessment

45 If an official “project process team” (e.g., system engineering process group [SEPG]) does not

exist, then whichever team, group, or individual that is filling the process engineer role should
perform this task.

96 CMU/SEI-2006-HB-001

• incrementally, before major milestone reviews (in order to feed into these reviews)

• in an ongoing, incremental manner as the quality of the subsystem architectures are as-
sessed

Phase Objectives
The objectives of this phase are to

• Collect the results of all of the preceding subsystem architecture quality assessments and
document the resulting overall quality assessment of the system’s architecture.

• Perform a final outbrief capturing what went well and what could be improved regarding
the system architecture quality assessment process.

Phase Tasks
As illustrated in Figure 15 on page 85, the system architecture assessment summary phase
consists of the following three tasks, which are performed sequentially:

1. System Architecture Assessment Summary – Preparation

2. System Architecture Assessment Summary – Initial Kickoff Meeting

3. System Architecture Assessment Summary – Follow-Through

Summarizing the Results of the Individual Subsystem Architecture Assessments
There are three basic ways that the results of the individual subsystem architecture quality
assessments can be summarized into a final assessment of the quality of the overall system.
Therefore, one of the goals of tailoring the QUASAR method is to select one or more of the
most appropriate of these summarization approaches based on the needs of the organizations
involved. Each approach to summarizing the results of the individual subsystem architecture
quality assessments has its own advantages and disadvantages. The selected summarization
approaches should meet the specific needs of the stakeholder organizations and best address
the primary reasons for performing the architecture assessments. An approach should be se-
lected from the following list:

1. Average of Subsystem Architecture Quality

When using this approach, the quality of the system architecture is the [weighted] aver-
age of the qualities of its subsystem architectures. Assume that the assessment team has
already used their expert judgment to assign a color value (e.g., green, yellow, and red)
to the subsystem architecture’s support for each individual quality factor’s set of associ-
ated quality requirements (e.g., a subsystem’s architectural support for interoperability is
green, reliability is yellow, and performance is red). The assessment team then assigns
each color a standard numerical value (e.g., green = 2, yellow = 1, and red = 0). If ap-
propriate, the assessment team assigns each quality factor a numerical weight based on
the criticality of that quality factor to the subsystem’s architecture and also assigns a

CMU/SEI-2006-HB-001 97

numerical weight to the criticality of that subsystem’s architecture to the quality of the
overall architecture of the system.46

a. Advantages
− When properly defined for the entire set of subsystem architecture assessments,

the averaging approach provides a standard way to compare the results of multi-
ple subsystem architecture quality assessments.

− This approach provides a simplified answer to the question: “What is the quality
of the system’s architecture?”

b. Disadvantages
− This approach attempts to build an “objective” numerical structure on top of a

foundation of “subjective” expert opinion (a Delphi approach). It “mixes apples
and oranges” in a statistically highly questionable manner.

− Although this approach provides the appearance of numerical legitimacy, the re-
sulting value it provides is probably far less accurate and precise than it seems.

− It is extremely difficult to quickly and easily set the numerical color values and
weightings in a manner that supports the goals of the assessment. This can be-
come a major source of disagreement and wasted time.

− This approach is by far the most complex and labor intensive to use.
− Useful information is lost because this approach does not clearly identify those

parts of the overall system architecture that still need work, what kind of problem
exists (e.g., safety, security, usability), or even the severity of the problem.

− It is highly questionable if the extra effort needed to provide this kind of average
assessment is worth the questionable value derived given its potential disadvan-
tages.

c. Appropriateness
This approach is not recommended. If used, its use should probably be restricted to
organizational internal assessments, the goal of which is to obtain a rough indica-
tion of the overall quality of the system architecture.

2. Worst Subsystem Architecture Quality

In this approach, the quality of the overall system architecture is equated with the worst
quality subsystem architecture. Assign the worst value of any subsystem architecture
quality assessment as the value of all of its super-systems including the overall system.
Thus, if the quality of any subsystem’s architecture for any cohesive set of quality re-
quirements (i.e., associated with any quality factor) is red, then the quality of the overall
system architecture is also red.
a. Advantages

− The approach is objective and easy to apply.
− This approach provides a great incentive for the architects to fix any problems

that prevent a subsystem’s architecture from adequately supporting a quality re-
quirement.

46 Note that the definitions for colors and weightings should be well-defined and standardized across

all subsystems of the system.

98 CMU/SEI-2006-HB-001

− It provides a simple answer to the question: “What is the quality of the system’s
architecture?”

b. Disadvantages
− This approach denies the architects credit for all of the good architectural deci-

sions they have made; a single subsystem’s architecture failing to adequately
support a single quality requirement is sufficient cause for the entire system ar-
chitecture to “fail” the assessment.

− This approach does not take into account that all quality requirements and all
subsystem architectures are not equally critical.

c. Appropriateness
This approach is probably best used for assessing contract compliance because one
could argue that if a subsystem’s architecture does not adequately support a quality
requirement, then the overall system’s architecture also does not adequately support
that same quality requirement.

3. Union of Subsystem Architecture Qualities

With this summarization approach, the quality of the overall system architecture is the
union of the qualities of its subsystem architectures. Collect and collate the information
from all of the subsystem architecture quality assessments into one or more matrices that
shows a mapping from the subsystem (i.e., matrix row) and quality factor (i.e., matrix
column) to its associated quality representing color (i.e., associated cell in the matrix).
a. Advantages

− The approach is objective and relatively easy to apply.
− This approach clearly identifies those parts of the overall system architecture that

still need work, what kind of problem exists (e.g., safety, security, usability), or
the severity of a problem.

− This approach provides full credit for all of the good architectural decisions that
the architects made; a single subsystem’s architecture failing to adequately sup-
port a single quality requirement is not sufficient to cause the entire architecture
to “fail” the assessment.

− This approach takes into account the fact that all quality requirements and all
subsystem architectures are not equally critical.

− This approach provides an ongoing, iterative, and incremental summary of the
system architecture as the qualities of its subsystem architectures are assessed.

− No information is lost in producing a single overall numerical (or color) value for
the quality of the overall system architecture.

− This approach can be easily combined with the previous approaches.
b. Disadvantages

− This approach does not provide a single, simple answer to the question: “What is
the quality of the system’s architecture?”47

− This approach may not be acceptable to managers who demand such a single an-
swer to the question.

47 Then again, there may not be any reasonable single answer to that question.

CMU/SEI-2006-HB-001 99

− On really large systems in which the architectures of many subsystems are as-
sessed, the result of this approach becomes somewhat more difficult to evaluate
as the scope of the assessment increases in numbers of subsystems and numbers
of quality factors.

c. Appropriateness
This approach should probably always be used, regardless of whether any of the
preceding approaches are also used. This approach should definitely be used if the
primary reason for performing the architecture quality assessments is to determine
how to allocate limited resources for improving the subsystem architectures.

5.4.1 System Architecture Assessment Summary –
Preparation

Preparation Task Objective
The objectives of this task are to

• Gather the results of the quality assessments of the individual subsystem architectures
that are within the scope of the overall system architecture’s quality assessment.

• Organize and summarize the results in preparation for the system architecture assess-
ment summary meeting.

Preparation Task Duration
The duration of this task varies depending on whether the final phase occurs

• once, at the end of all of the individual subsystem architecture quality assessments

• prior to each major project milestone meeting during which the state of the system archi-
tecture is presented

• on an ongoing basis as the individual subsystem architecture quality assessments are
performed

Preparation Task Preconditions
This task can be started when all (or a sufficient number for an intermediate system architec-
ture assessment summary) of the subsystem architecture assessments have been completed.

Preparation Task Steps
The following steps are performed during this task:

1. Collect individual subsystem architecture quality assessments.

Step: The assessment team collects the results of the individual subsystem architecture
quality assessments.

Rationale: The overall system architecture quality assessment is a summation of the in-
dividual subsystem architecture quality assessments.

100 CMU/SEI-2006-HB-001

2. Summarize subsystem architecture quality assessment results.

Step: Using the agreed-upon summarization process, the assessment team organizes and
summarizes the individual subsystem architecture quality assessments results in prepara-
tion for the system architecture assessment summary meeting. This includes creating the
subsystem summary matrix.

Rationale: It is important to use the consensus approach for summarizing the individual
subsystem architecture quality assessment results.

3. Identify primary stakeholders.

Step: The assessment team collaborates with the system architecture team to identify the
primary stakeholders who may
a. attend the system architecture assessment summary meeting
b. receive a copy of the system architecture assessment summary report

Rationale: It is important to invite all relevant stakeholders to the meeting and provide
them with a copy of the presentation materials and summary report so that no significant
stakeholder is excluded.

4. Produce, review, and distribute the architecture assessment summary report.

Step: In the weeks leading up to the system architecture quality assessment meeting, the
following substeps are performed:
a. Produce the architecture assessment summary report.

Substep: Based on the individual subsystem architecture quality assessment results
and their summaries, selected members of the assessment team produce the system
architecture quality assessment summary report for the system architecture quality
assessment meeting.
Rationale: The summary report enables is the primary deliverable of the system ar-
chitecture assessment.

b. Perform an internal review of the architecture assessment summary report.
Substep: The members of the assessment team perform an internal quality check on
the system architecture quality assessment summary report.
Rationale: It is cost-effective to identify and fix defects prior to distribution of the
report.

c. Perform an internal review of the architecture assessment summary report.
Substep: The authors of the system architecture quality assessment summary report
make any final fixes prior to initial distribution.
Rationale: Fixing mistakes prior to the meeting enables the attendees to concentrate
on the content of the system architecture quality assessment summary report rather
than any defects it might contain.

d. Distribute the architecture assessment summary report.
Substep: The authors of the system architecture quality assessment summary report
distribute the initial version to the meeting attendees and other stakeholders.

CMU/SEI-2006-HB-001 101

Rationale: This enables the meeting attendees to read the system architecture qual-
ity assessment summary report prior to the meeting.

5. Produce, review, and distribute the summary presentation materials.

Step: In the weeks leading up to the system architecture quality assessment meeting, the
following substeps are performed:
a. Produce summary presentation materials.

Substep: Based on the system architecture quality assessment summary report, se-
lected members of the assessment team produce the system summary meeting pres-
entation materials for the system architecture quality assessment meeting.
Rationale: The presentation materials enable an overview of the content of the sys-
tem architecture quality assessment summary report to be distributed and presented
at the meeting.

b. Perform an internal review of the summary presentation materials.
Substep: The members of the assessment team perform an internal quality check on
the system summary meeting presentation materials.
Rationale: It is cost-effective to identify and fix defects prior to distribution and
presentation of the meeting materials.

c. Perform an internal review of the summary presentation materials.
Substep: The authors of the system summary meeting presentation materials make
any final fixes prior to distribution.
Rationale: Fixing mistakes prior to the meeting enables the attendees to concentrate
on the content of the presentation materials rather than defects.

d. Distribute the summary presentation materials.
Substep: The authors of the system summary meeting presentation materials dis-
tribute the final presentation materials to the meeting attendees and other stake-
holders.
Rationale: This enables the meeting attendees to read the presentation materials
prior to the meeting.

6. Organize the meeting.

Step: At least two weeks prior to the system architecture assessment summary meeting,
the assessment team and system architecture team collaborate to complete the following
steps:
a. Identify meeting attendees and other stakeholders.

Substep: The assessment and system architecture teams develop a list of meeting at-
tendees and other stakeholders who should receive copies of the system architecture
summary report and meeting presentation materials.
Rationale: It is important to ensure that no significant stakeholder is overlooked.

102 CMU/SEI-2006-HB-001

b. Set time and location.
Substep: The assessment and system architecture teams determine an exact time
and location (e.g., address, building number, and room number) for the system ar-
chitecture assessment summary meeting.
Rationale: Attendees need exact times to avoid conflicts.

c. Develop meeting agenda.
Substep: The assessment team and system architecture team set up a meeting
agenda covering introducing restatement of assessment objectives, summary of as-
sessment method, summary of quality of the architecture of the individual subsys-
tems, summary of the overall system architecture, and meeting wrap-up (e.g., status
of action items and assignment of final new action items).
Rationale: Agendas enable attendees to identify the most important parts of the
meeting.

d. Invite stakeholders.
Substep: The assessment team sends an invitation including the meeting agenda to
the identified meeting attendees and other stakeholders.
Rationale: Documented invitations (e.g., email with attached agenda) are conven-
ient for invitees who can add the meeting to their schedules and read the agendas.

Preparation Task Postconditions
This task is successfully completed when the following postconditions are met:

• Individual subsystem architecture assessment reports have been gathered and their re-
sults have been summarized.

• The initial version of the system architecture quality assessment summary report has
been produced, reviewed, and distributed to its primary stakeholders.

• The presentation materials have been produced, reviewed, and distributed to the stake-
holders.

• The system architecture assessment summary meeting has been organized.

5.4.2 System Architecture Assessment Summary – Meeting
Meeting Task Objectives
The objectives of this task are to

• Present the overall results of the system architecture quality assessment to its major
stakeholders.

• Perform a final review48 on the system architecture quality assessment process.

Meeting Task Duration
The duration of this task is typically half a day.

48 Such a review is often referred to as a “postmortem.”

CMU/SEI-2006-HB-001 103

Meeting Task Preconditions
This task can be started when the following preconditions are met

• Individual subsystem architecture assessment reports have been gathered and their re-
sults have been summarized.

• The initial version of the system architecture quality assessment summary report has
been produced, reviewed, and distributed to its primary stakeholders.

• The presentation materials have been produced, reviewed, and distributed to the stake-
holders.

• The system architecture assessment summary meeting has been organized.

Meeting Task Steps
During this task, the following steps are performed:

1. Restate assessment objectives.

Step: The assessment team presents a restatement of the overall system architecture
quality assessment objectives.

Rationale: Not all attendees at the final meeting, especially members of upper manage-
ment, will be familiar with the specific objectives of the method used to arrive at the
overall assessment of the quality of the system’s architecture.

2. Summarize assessment method.

Step: The assessment team presents to the meeting attendees a brief summary of the [tai-
lored] method used to assess the quality of the system architecture.

Rationale: Not all attendees at the final meeting, especially members of upper manage-
ment, will be familiar with the method used to arrive at the overall assessment of the
quality of the system’s architecture.

3. Summarize quality of subsystem architectures.

Step: The assessment team presents an overview of the subsystem architecture quality
assessment results (to date if this final phase is performed incrementally).

Rationale: The subsystem architectures are the foundation on which the overall system
architecture is built. It is useful to have a brief summary of the preceding assessments as
they are likely to have occurred over the course of several months (or even years) and
are not fresh in the minds of most of the meeting attendees.

4. Present summary of the quality of the system architecture.

Step: The assessment team presents a summary of the system architecture quality. This
may be the quality of subsystem architectures assessed to date if this final phase is per-
formed incrementally.

Rationale: This step presents the overall results of the QUASAR method, which is the
primary result of the overall assessment method.

104 CMU/SEI-2006-HB-001

5. Solicit feedback.

Step: The assessment team solicits comments concerning the assessment results, espe-
cially presentation or report contents that are factually incorrect.

Rationale: This step enables all stakeholders to have a final chance to ensure the quality
of the system architecture assessment report.

6. Capture lessons learned.

Step: The assessment team collaborates with meeting attendees to capture lessons
learned about the effectiveness of the system architecture assessment summary phase of
the QUASAR method.

Rationale: This step enables the method to be continually improved and tailored for fu-
ture projects.

Meeting Task Postconditions
This task is successfully completed when the following postconditions are met:

• The objectives of the system architecture quality assessment have been presented to the
meeting attendees.

• A summary of the system architecture quality assessment method has been presented to
the meeting attendees.

• The quality of each of the subsystem architectures has been presented to the meeting
attendees.

• The summary of the overall quality of the system architecture has been presented to the
meeting attendees.

• Feedback has been solicited from the meeting attendees.

• Lessons learned about the system architecture quality assessment method have been cap-
tured.

• The members of the assessment team have taken notes.

5.4.3 System Architecture Assessment Summary –
Follow-Through

Follow-Through Task Objective
The objective of this task is to finalize the work associated with the system architecture qual-
ity assessment.

Follow-Through Task Duration
Updating and distributing the final report should not take more than one or two weeks, de-
pending on the number of changes to be made resulting from feedback at the final summary
meeting. Similarly, the amount of time taken to track action items to completion varies de-
pending on the number and types of action items. Finally, updating the assessment method’s

CMU/SEI-2006-HB-001 105

training materials and associated procedure largely depends on the number and types of les-
sons learned.

Follow-Through Task Preconditions
This task can be started when the following preconditions are met:

• The objectives of the system architecture quality assessment have been presented to the
meeting attendees.

• A summary of the system architecture quality assessment method has been presented to
the meeting attendees.

• The quality of each of the subsystem architectures has been presented to the meeting
attendees.

• The summary of the overall quality of the system has been presented to the meeting at-
tendees.

• Feedback has been solicited from the meeting attendees.

• Lessons learned about the system architecture quality assessment method have been cap-
tured.

• The members of the assessment team have taken notes.

Follow-Through Task Steps
After the system architecture assessment summary meeting, the following steps are per-
formed in a timely manner:

1. Update the system architecture assessment summary report.

Step: The assessment team makes any final updates to the system architecture assess-
ment summary report based on inputs from the system architecture assessment summary
meeting.

Rationale: This step produces the final version of primary deliverable of the QUASAR
method.

2. Distribute the system architecture assessment summary report.

Step: The assessment team distributes the final version of the system architecture as-
sessment summary report to its stakeholders.

Rationale: This step ensures that the stakeholders receive the results of the assessments
and thereby realize the value of the preceding steps (i.e., obtain the return on their in-
vestment in prior effort).

3. Manage action items.

Step: The assessment team collaborates with the meeting attendees to collect, identify,
and record any action items from the meeting. This includes setting due dates and as-

106 CMU/SEI-2006-HB-001

signing the action items to appropriate people. The assessment team tracks all remaining
action items to closure.

Rationale: Unless action items are assigned and due dates are scheduled, the action
items are unlikely to be properly handled in a timely manner and tracked to completion.

4. Update assessment method and associated training materials.

Step: Based on the lessons learned, the project process team49 updates the project-
tailored QUASAR procedure and the associated QUASAR training materials. Where
appropriate, they also provide the SEI with the lessons learned and updated procedure
and training materials so that the official QUASAR documentation can be iterated.

Rationale: Updating the QUASAR enables the process to be improved on future system
architecture assessment summary phases and future projects.

Follow-Through Task Postconditions
This task is successfully completed when the following postconditions are met:

• The final system architecture assessment summary report has been produced and dis-
tributed to its stakeholders.

• Action items have been tracked to completion.

• The system architecture quality assessment procedure and associated training materials
have been updated.

49 If an official “project process team” (e.g., system engineering process group [SEPG]) does not

exist, then whichever team, group, or individual that is filling the process engineer role should
perform this task.

CMU/SEI-2006-HB-001 107

108 CMU/SEI-2006-HB-001

6 QUASAR Work Products

The purpose of the QUASAR method is to assess the quality of system architecture, not to
produce documentation just for the sake of having it. Nevertheless, some documentation can
be very useful for recording and conveying important information related to the assessment
of system architectures. Where appropriate and cost-effective, the teams performing the tasks
of the QUASAR method typically produce the following work products:

1. System Architecture Assessment Initiation Work Products
a. Architecture Assessment Procedure
b. Architecture Assessment Training Materials
c. Initial Kickoff Meeting Agenda
d. Initial Kickoff Meeting Assessor Notes
e. Initial Kickoff Meeting Minutes
f. Assessment Schedule
g. Assessment Action Item List

2. Subsystem Requirements Review Work Products
a. Subsystem Requirements Review Checklist
b. Subsystem Requirements Review Preparatory Materials
c. Subsystem Requirements Review Presentation Materials
d. Subsystem Requirements Trace
e. Subsystem Requirements Review Meeting Agenda
f. Subsystem Requirements Review Meeting Assessor Notes
g. Subsystem Requirements Review Meeting Outbrief
h. Subsystem Requirements Review Meeting Minutes
i. Updated Assessment Action Item List

3. Subsystem Architecture Assessment Work Products
a. Subsystem Architecture Assessment Checklist
b. Subsystem Architecture Assessment Preparatory Materials
c. Subsystem Architecture Assessment Presentation Materials
d. Subsystem Architecture Assessment Meeting Agenda
e. Subsystem Architecture Assessment Meeting Assessor Notes
f. Subsystem Architecture Support Matrix
g. Subsystem Architecture Assessment Meeting Outbrief
h. Subsystem Architecture Assessment Report
i. Updated Assessment Action Item List

CMU/SEI-2006-HB-001 109

4. System Architecture Assessment Summary Work Products
a. System Summary Subsystem Matrix
b. System Summary Meeting Presentation Materials
c. System Architecture Assessment Summary Meeting Agenda
d. System Architecture Assessment Summary Meeting Assessor Notes
e. System Architecture Quality Assessment Summary Report

6.1 System Architecture Assessment Initiation Work
Products

As illustrated in Figure 16, the following work products are produced for and during the sys-
tem architecture assessment initiation phase and are described in detail in the sections that
follow:

1. Architecture Assessment Procedure

2. Architecture Assessment Training Materials

3. Initial Kickoff Meeting Agenda

4. Initial Kickoff Meeting Assessor Notes

5. Initial Kickoff Meeting Minutes

6. Assessment Schedule

7. Assessment Action Item List

110 CMU/SEI-2006-HB-001

Assessment
Team

Top-Level
Architecture

Team

Architecture Assessment Procedure

Discussion during Initial Kick-Off Meeting

Tailored Architecture Assessment Procedure, Draft
Initial Kick-Off Meeting Minutes, Draft Assessment

Schedule, and Draft Action Item List

Comments and Recommendations

Initial Kick-Off Meeting Minutes,
Assessment Schedule, and Action Item List

Updates

Updated Assessment Schedule and Action Item List

Subsystem
Requirements

Teams

Subsystem
Architecture

Teams

Procedure
Procedure

Discussions
Discussions

Tailored
Procedure Tailored

Procedure

Assessment
Schedule Assessment

Schedule

Discussions
Discussions

Updated
Assessment

Schedule
Updated

Assessment
Schedule

re
pe

at

Figure 16: Initial Kickoff Meeting Work Products

6.1.1 Architecture Assessment Procedure
• Definition - the organizational or system-specific, tailored procedure that documents

how to perform the architecture assessments

• Objectives

Document the system architecture quality assessment method, including the
− tasks to be performed during the assessments
− teams that will perform these tasks
− work products to be produced by these teams

• Stakeholders
− Produced by the assessment team
− Reviewed by the

− assessment team (prior to delivery to the architecture team)
− top-level architecture team (prior to the initial kickoff meeting)
− requirements teams (prior to the subsystem requirements review meetings)
− subsystem architecture teams (prior to the subsystem architecture assessment

meetings)
− Maintained by the assessment team

CMU/SEI-2006-HB-001 111

− Used by the

− architecture teams to understand their responsibilities including tasks to perform
and work products to produce

− assessment team to understand their responsibilities including tasks to perform and
work products to produce

− management team to understand the resources required to implement the assess-
ment method

− requirements teams to understand their responsibilities including tasks to perform
and work products to produce

• Inputs
− default assessment procedure (i.e., this handbook)
− attendees’ prior experience performing architecture assessments

• Contents
− Front Matter
− Introduction

− Objectives of the Assessments
− Terms and Concepts

− Quality Cases
− Potentially Relevant Quality Factors
− Quality Goals and Requirements
− Claims
− Arguments
− Evidence
− Examples

− Tasks
− Objectives
− Steps
− Preconditions and Postconditions

− Teams and Member Roles
− Responsibilities
− Team composition

− Work Products
− Name and Definition
− Objectives (purpose)
− Stakeholders
− Inputs
− Contents

6.1.2 Architecture Assessment Training Materials
• Definition - the organizational or system-specific, tailored training materials for teach-

ing the architecture quality assessment method

112 CMU/SEI-2006-HB-001

• Objectives

Enable the assessment team to train the assessment participants (e.g., new members and
members of the development organization [members of the system and subsystem re-
quirements and architecture teams]) how to perform the assessment method.

• Stakeholders
− Produced by the assessment team
− Reviewed by the

− assessment team (prior to delivery to the architecture team)
− top-level architecture team (prior to the initial kickoff meeting)
− requirements teams (prior to the subsystem requirements review meetings)
− subsystem architecture teams (prior to the subsystem architecture assessment

meetings)
− Maintained by the assessment team
− Used by the

− architecture teams to understand their responsibilities including tasks to perform
and work products to produce

− assessment team to understand their responsibilities including tasks to perform and
work products to produce

− management team to understand the resources required to implement the assess-
ment method

− requirements teams to understand their responsibilities including tasks to perform
and work products to produce

• Input
− Architecture Assessment Procedure

• Contents
− Introduction

− Objectives of the Assessments
− Terms and Concepts

− Quality Cases
− Potentially Relevant Quality Factors
− Quality Goals and Requirements
− Claims
− Arguments
− Evidence
− Examples

− Tasks
− Objectives
− Steps
− Preconditions and Postconditions

− Teams and Member Roles
− Responsibilities
− Team Composition

CMU/SEI-2006-HB-001 113

− Work Products
− Name and Definition
− Objectives (purpose)
− Stakeholders
− Inputs
− Contents

6.1.3 Initial Kickoff Meeting Agenda
• Definition - the informal, typically one-page agenda for the initial system-wide kickoff

meeting

• Objective

Inform meeting attendees of meeting topics and times.

• Stakeholders
− Produced by the

− assessment team
− system requirements team
− system architecture team

− Not reviewed
− Not maintained
− Used by the meeting attendees

• Inputs
− Architecture Assessment Procedure
− discussions

• Contents
− Meeting Topics and Times

− Introductions and Meeting Logistics
− Assessment Scope
− Assessment Schedule
− Tailoring of Assessment Method
− Meeting Wrap-Up

6.1.4 Initial Kickoff Meeting Assessor Notes
• Definition - informal notes taken by an individual assessor during a subsystem require-

ments meeting

• Objectives
− Capture information that the assessor considers significant.
− Provide content for the subsystem requirements meeting outbrief and meeting min-

utes.

114 CMU/SEI-2006-HB-001

• Stakeholders
− Produced by individual members of the assessment team who attend the subsystem

requirements meeting
− Not reviewed
− Not maintained
− Used by the scribe of the assessment team, to use as input to the subsystem require-

ments meeting outbrief and meeting minutes

• Inputs
− Subsystem Requirements Meeting Checklist
− Subsystem Requirements Meeting Preparatory Materials
− Subsystem Requirements Meeting Presentation Materials
− Subsystem Requirements Trace
− Answers to assessors questions

• Contents
− Informal Notes Capturing Observations or Key Findings

− requirements driving the subsystem architecture
− architects’ representative partial quality cases

− Recommendations for Improvement
− requirements driving the subsystem architecture
− architects’ representative partial quality cases
− architecture assessment method

− Questions Asked and Answers Given
− Other information that the individual assessor considered significant and worthy of

note

6.1.5 Initial Kickoff Meeting Minutes
• Definition - the official record of the proceedings of the initial kickoff meeting

• Objective

Record the major occurrences and decisions made during the initial kickoff meeting.

• Stakeholders
− Produced by the assessment team
− Reviewed by the meeting attendees (prior to publication)
− Maintained by the assessment team (factual corrections only)
− Used by the

− architecture teams to understand consensus reached and agreements made
− assessment team to understand consensus reached and agreements made
− management team to understand required resources
− requirements teams to understand consensus reached and agreements made

• Input
− notes and comments from meeting attendees

CMU/SEI-2006-HB-001 115

• Contents
− Meeting Date and Location
− Invitees

− Members of the Assessment Team
− Members of the Top-Level Architecture Team

− Scope of the Assessments
− Subsystems to be Assessed
− Prioritized List of Architecturally Significant Requirements (e.g., quality factors)
− Assessment Resources (e.g., personnel and time)

− Assessment-Specific Tailoring of the Assessment Method
− Assessment Schedule (by reference – see Section 6.1.6)
− Action Items (by reference – see Section 6.1.7)

6.1.6 Assessment Schedule
• Definition - the schedule that documents the tentative dates of the assessment meetings

for the individual assessments and subsequent roll-up meetings

• Objectives
− Enable scheduling of preparatory work (e.g., development of architecturally signifi-

cant requirements, architecture documentation, and quality cases including claims,
arguments, and evidence).

− Enable scheduling of resources (e.g., personnel and meeting rooms).
− Help avoid schedule conflicts (e.g., with major programmatic reviews and other de-

velopment work).

• Stakeholders
− Produced by the

− assessment team
− top-level architecture team

− Reviewed by the
− Architecture team (prior to publication)
− Assessment team (prior to publication)
− Management team (prior to publication)

− Maintained by the assessment team (factual corrections only)
− Used by the

− architecture teams to understand schedule commitments
− assessment team to understand schedule commitments
− requirements teams to understand schedule commitments
− management teams to understand schedule commitments

• Input
− Initial Kickoff Meeting Minutes

116 CMU/SEI-2006-HB-001

• Contents
− Agreed-Upon Dates of Initial Meetings
− Tentative Dates for the Remaining Meetings

6.1.7 Assessment Action Item List
• Definition - a list of actions to be taken resulting from the meeting

• Objective

Ensure that actions identified during the meeting are assigned and tracked to completion.

• Stakeholders
− Produced by the assessment team
− Reviewed by the meeting attendees
− Maintained by the assessment team
− Used by the attendees to keep track of assigned actions

• Input
− Initial Kickoff Meeting Minutes

• Contents
− Action Items

− Unique Identifier
− Action to be Taken
− Person Assigned Action
− Due Date
− Status

6.2 Subsystem Requirements Meeting Work
Products

As illustrated in Figure 17, the following work products are produced for and during the indi-
vidual subsystem requirements meetings:

1. Subsystem Requirements Review Checklist

2. Subsystem Requirements Review Preparatory Materials

3. Subsystem Requirements Review Presentation Materials

4. Subsystem Requirements Trace

5. Subsystem Requirements Review Meeting Agenda

6. Subsystem Requirements Review Meeting Assessor Notes

7. Subsystem Requirements Review Meeting Outbrief

8. Subsystem Requirements Review Meeting Minutes

9. Action Item List (updated and maintained – see Section 6.1.7)

CMU/SEI-2006-HB-001 117

Assessment
Team

Subsystem
Requirements

Team

Subsystem Requirements Meeting Preparatory Materials

Discussion during Subsystem Requirements Meeting

Subsystem
Architecture

Team

Top-Level
Architecture

Team

Subsystem
Requirements

Meeting Preparatory
Materials

Subsystem Requirements Meeting Presentation Materials
Requirements Trace

Subsystem
Requirements

Meeting Presentation
Materials

Any additional requested information

Subsystem
Requirements

Meeting Outbrief

Discussion

Any additional
requested information

Subsystem Requirements Meeting Outbrief

Draft Subsystem
Requirements

Meeting Minutes and
Draft Action Item List

Draft Subsystem Requirements Meeting Minutes
And Draft Action Item List

Comments and Recommendations Comments and
Recommendations

Subsystem
Requirements

Meeting Minutes and
Action Item List

Subsystem Requirements Meeting Minutes
And Action Item List

Subsystem
Requirements

Meeting Minutes and
Action Item List

Management
Team

Subsystem
Requirements

Meeting Minutes and
Action Item List

Updates
Updates

Update Action Item List Updated Action
Item Listre

pe
at

Subsystem Requirements Meeting Checklist Subsystem
Requirements

Meeting Checklist
Subsystem

Requirements
Meeting Checklist

Figure 17: Subsystem Requirements Meeting Work Products

6.2.1 Subsystem Requirements Review Checklist
• Definition - a checklist that is used by the assessment team during the subsystem re-

quirements meetings to help them identify defects in the requirements

• Objectives
− Help the subsystem requirements team improve the engineering of the derived archi-

tecturally significant requirements allocated to the subsystem.
− Help the subsystem architecture team better prepare for the subsystem architecture

assessment meeting.
− Help the assessment team identify defects associated with the architecturally signifi-

cant requirements that have been allocated to the subsystem.
− Help the assessment team identify defects associated with the subsystem architecture

team’s quality cases.

118 CMU/SEI-2006-HB-001

• Stakeholders
− Produced by the assessment team
− Reviewed by the

− subsystem architecture team
− subsystem requirements team

− Maintained by the assessment team
− Used by the

− assessment team to identify defects associated with the architecturally significant
requirements and the subsystem architecture team’s representative samples of draft
quality cases

− subsystem architecture team to understand what is expected of them during the
relevant subsystem requirements meeting and subsystem architecture assessment
meeting

− subsystem requirements team to understand what is expected of them during the
subsystem requirements meeting

• Inputs
− Architecture Assessment Method (tailored)
− Default Subsystem Requirements Meeting Checklist (e.g., example in Appendix D in

this handbook)
− Initial Kickoff Meeting Minutes

• Contents
− Requirements Questions

− questions related to potential completeness defects associated with requirements
driving the subsystem architecture

− questions related to potential quality (ambiguity, feasibility, etc.) defects associated
with requirements driving the subsystem architecture

− Questions About Quality Cases
− questions related to potential defects associated with claims
− questions related to potential defects associated with arguments
− questions related to potential defects associated with evidence

6.2.2 Subsystem Requirements Review Preparatory
Materials

• Definition - materials provided to the assessment team prior to a subsystem require-
ments meeting

• Objectives
− Enable the assessment team to properly prepare for the associated subsystem re-

quirements meeting.
− Enable the assessment team members to be more effective during the subsystem re-

quirements meeting.
− Decrease the time needed for the actual subsystem requirements meeting.

CMU/SEI-2006-HB-001 119

• Stakeholders
− Produced by the

− subsystem requirements team
− subsystem architecture team

− Reviewed by the
− various teams, depending on the materials (requirements specifications, require-

ments repository, requirements traces, etc.)
− top-level architecture team

− Maintained by the
− subsystem requirements team
− subsystem architecture team

− Used by the assessment team to become familiar with the content, quality, and status
of the requirements that will significantly influence the subsystem architecture

• Input
− varies depending on the materials

• Contents
− Requirements-Related Information

− requirements specifications with architecturally significant requirements identified
(e.g., highlighted or indexed)

− information providing read-only access to the requirements repositories
− requirements traces with architecturally significant requirements highlighted or re-

stricted to architecturally significant requirements (see below)
− any questions that the subsystem requirements team might have regarding the

pending subsystem requirements meeting
− Architecture-Related Information

− representative samples of incomplete draft quality cases
− any questions that the subsystem architecture team might have regarding the future

subsystem architecture assessment meeting

6.2.3 Subsystem Requirements Review Presentation
Materials

• Definition - presentation materials that are presented to the assessment team during the
subsystem requirements meeting

• Objectives
− Communicate the architecturally significant requirements to the assessment team.
− Communicate the subsystem architects’ understanding of their responsibilities asso-

ciated with the associated subsystem architecture assessment meeting.

• Stakeholders
− Produced by the

− subsystem requirements team
− subsystem architecture team

120 CMU/SEI-2006-HB-001

− Reviewed by the top-level architecture team
− Maintained by the

− subsystem requirements team
− subsystem architecture team

− Used by the assessment team to understand the requirements relevant to the subsystem
architecture and the subsystem architect’s understanding of their responsibilities asso-
ciated with the associated subsystem architecture assessment meeting

• Inputs
− Architecture Assessment Procedure
− Initial Kickoff Meeting Minutes
− Subsystem Requirements
− Subsystem Requirements Meeting Preparatory Materials
− feedback from the assessment team

• Contents
− Requirements-Related Information

− summary of the subsystem requirements relevant to the subsystem architecture
− summary of the requirements traces with only the architecturally significant re-

quirements or with the architecturally significant requirements highlighted (see
Section 6.2.4)

− remaining questions that the subsystem requirements team might have regarding
the pending subsystem requirements meeting

− Architecture-Related Information
− representative, partial samples of architecture quality cases
− remaining questions that the subsystem architecture team might have regarding the

pending subsystem architecture assessment meeting

6.2.4 Subsystem Requirements Trace
• Definition - documentation tracing derived and allocated requirements that are relevant

to the subsystem architecture back to their sources (e.g., contract requirements or re-
quirements at the next higher tier in the architecture)

• Objectives
− Ensure that all requirements that drive the subsystem architecture have been identi-

fied, derived, and allocated to the subsystem architecture.
− Ensure that the requirements are of sufficient quality to enable the subsystem archi-

tects to properly develop the subsystem architecture.

• Stakeholders
− Produced by the subsystem requirements team
− Review varies depending on the requirements engineering method
− Maintenance varies depending on the requirements engineering method

CMU/SEI-2006-HB-001 121

− Used by the
− assessment team to understand the requirements driving the subsystem architecture

so that they can assess the subsystem architecture against these requirements
− subsystem architecture team to drive the development of the subsystem architec-

ture

• Input
− varies depending on the requirements engineering method

• Contents
− Mapping of requirements relevant to the subsystem architecture back to their sources

(e.g., contract requirements or requirements at the next higher tier in the architec-
ture)50

6.2.5 Subsystem Requirements Review Meeting Agenda
• Definition - the informal, typically one-page agenda for a single subsystem require-

ments review meeting

• Objective

Inform meeting attendees of meeting topics and associated times.

• Stakeholders
− Produced by the

− assessment team
− subsystem requirements team
− subsystem architecture team

− Not reviewed
− Not maintained
− Used by the meeting attendees

• Inputs
− Architecture Assessment Procedure
− discussions

50 Depending on the availability of requirements management tools, this requirements trace may

include all requirements allocated to the subsystem or only those requirements that drive the archi-
tecture of the subsystem.

122 CMU/SEI-2006-HB-001

• Contents
− Meeting Topics and Times

− Introductions and Meeting Logistics
− Quality Factors
− Quality Requirements
− Sample Quality Cases
− Special Assessment Staffing Needs
− Schedule of Coming Events
− Meeting Wrap-Up

6.2.6 Subsystem Requirements Review Meeting Assessor
Notes

• Definition - informal notes taken by an individual assessor during a subsystem require-
ments meeting

• Objectives
− Capture information that the assessor considers significant.
− Provide content for the subsystem requirements meeting outbrief and meeting min-

utes.

• Stakeholders
− Produced by individual members of the assessment team who attend the subsystem

requirements meeting
− Not reviewed
− Not maintained
− Used by the scribe of the assessment team, to use as input to the subsystem require-

ments meeting outbrief and meeting minutes

• Inputs
− Subsystem Requirements Meeting Checklist
− Subsystem Requirements Meeting Preparatory Materials
− Subsystem Requirements Meeting Presentation Materials
− Subsystem Requirements Trace
− Answers to assessors’ questions

• Contents
− Informal Notes Capturing Observations or Key Findings

− requirements driving the subsystem architecture
− architects’ representative partial quality cases

− Recommendations for Improvement
− requirements driving the subsystem architecture
− architects’ representative partial quality cases
− architecture assessment method

CMU/SEI-2006-HB-001 123

− Questions Asked and Answers Given
− other information that the individual assessor considered significant and worthy of

note

6.2.7 Subsystem Requirements Review Meeting Outbrief
• Definition - an interim top-level summary of the results of a subsystem requirements

meeting

• Objectives
− Communicate a summary of the assessment team’s interim results from the subsys-

tem requirements meeting.
− Elicit comments and recommendations from the subsystem architecture and subsys-

tem requirements teams, especially to correct any factual misunderstandings before
they are incorporated into the meeting’s minutes.

• Stakeholders
− Produced by the assessment team
− Reviewed by the

− assessment team (internally before it is sent to the subsystem architecture and re-
quirements teams)

− subsystem architecture team
− subsystem requirements team

− Maintained by
− Temporary document that is not maintained, but rather superseded by the subsys-

tem requirements meeting minutes
− Used by the

− assessment team to communicate their interim results to the subsystem architecture
team and requirements team

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the architecture team’s presenta-
tion

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the requirements team’s presenta-
tion

• Inputs
− Subsystem Requirements Meeting Checklist
− Subsystem Requirements Meeting Preparatory Materials
− Subsystem Requirements Meeting Presentation Materials
− Subsystem Requirements Trace
− System Requirements Meeting Assessor Notes

• Contents
− Summary of Significant Observations and Findings

− requirements driving the subsystem architecture
− representative quality cases (e.g., claims, arguments, evidence)

124 CMU/SEI-2006-HB-001

− Recommendations (e.g., for better engineering the architecture-significant subsystem
requirements, for producing better architecture quality cases, or for improv-
ing/tailoring the system architecture assessment method)

− Requests for Further Information

6.2.8 Subsystem Requirements Review Meeting Minutes
• Definition - the official record of the proceedings of an individual subsystem require-

ments meeting

• Objectives
− Record the significant observations and findings made during the subsystem re-

quirements meeting about
− requirements that drive the subsystem architecture
− representative partial samples of architects’ cases (e.g., claims, arguments, evi-

dence) presented during the meeting
− Record any significant recommendations such as recommendations for

− better engineering the architecture-significant subsystem requirements
− producing better architecture quality cases
− improving/tailoring the system architecture assessment method

• Stakeholders
− Produced by the assessment team
− Reviewed by the meeting attendees (prior to official publication)
− Maintained by the assessment team (factual corrections only)
− Used by the

− assessment team to document their findings and recommendations and to act as an
input for updating/tailoring the architecture assessment procedure and subsystem
requirements checklist

− management team to understand the status and quality of the requirements that
drive the architecture

− subsystem architecture team to understand assessment team’s observations and
recommendations

− subsystem requirements team to help improve the quality of their requirements that
drive the subsystem architecture

− top-level architecture team to help them understand the status of the requirements
driving the subsystem architecture and the ability of the subsystem architecture
team to defend the quality of their architecture during the subsystem architecture
assessment meeting

CMU/SEI-2006-HB-001 125

• Inputs
− Subsystem Requirements Meeting Checklist
− Subsystem Requirements Meeting Preparatory Materials
− Subsystem Requirements Meeting Presentation Materials
− Subsystem Requirements Trace
− System Requirements Meeting Assessor Notes
− Subsystem Requirements Meeting Outbrief

• Contents
− Meeting Date and Location
− Attendees

− members of the assessment team
− members of the subsystem architecture team
− members of the subsystem architecture team

− Subsystem Requirements
− significant observations
− subsystem architecture quality cases
− significant observations

− Recommendations for Improvement
− requirements
− architecture quality cases
− architecture assessment method

− Action Items (by reference – see Section 6.1.7)

6.3 Subsystem Architecture Assessment Work
Products

As illustrated in Figure 18, the following work products are produced for or during the indi-
vidual subsystem architecture assessment meetings:

1. Subsystem Architecture Assessment Checklist

2. Subsystem Architecture Assessment Preparatory Materials

3. Subsystem Architecture Assessment Meeting Agenda

4. Subsystem Architecture Assessment Presentation Materials

5. Subsystem Architecture Assessment Assessor Notes

6. Subsystem Architecture Support Matrix

7. Subsystem Architecture Assessment Meeting Outbrief

8. Subsystem Architecture Assessment Meeting Report

126 CMU/SEI-2006-HB-001

Assessment
Team

Subsystem
Architecture

Team

Subsystem Architecture Assessment Meeting
Preparatory Materials

Discussion during Subsystem Architecture Assessment
Meeting

Top-Level
Architecture

Team

Management
Team

Subsystem Architecture Assessment Meeting
Presentation Materials

Any additional requested information

Discussion

Any additional
requested information

Subsystem Architecture Assessment Meeting Outbrief

Draft Subsystem Architecture Assessment Meeting Minutes
And Draft Action Item List

Comments and Recommendations Comments and
Recommendations

Subsystem
Architecture

Assessment Meeting
Minutes and Action

Item List

Subsystem Architecture Assessment Meeting Minutes
And Action Item List

Updates
Updates

Update Action Item List Updated Action
Item Listre

pe
at

Subsystem Architecture Assessment Meeting Checklist

Subsystem
Architecture
Assessment

Meeting Checklist

Subsystem
Architecture

Assessment Meeting
Minutes and Action

Item List

Figure 18: Subsystem Architecture Assessment Work Product Flow

The subsystem architecture assessment meeting work products possess the relationships de-
picted in Figure 19.

CMU/SEI-2006-HB-001 127

Preparatory
Materials

Architects’
Presentation

Assessor
Notes

Subsystem
Support Matrix

Models

Claims Associated
Arguments

Supporting
Evidence

Diagrams

Documents

Assessment
Outbrief

Assessment
Report

Relevant
Requirements

Review

Text

Legend

influences
aggregation

specialization

assessor work product
architect work product

Architecture
Overview

Quality
Cases

Figure 19: Subsystem Architecture Assessment Work Product Relationships

6.3.1 Subsystem Architecture Assessment Checklist
• Definition - a checklist used by the assessment team during the subsystem architecture

assessment meetings to help them identify defects

• Objectives
− Help the subsystem architecture team better prepare for the subsystem architecture

assessment meeting.
− Help the assessment team identify defects associated with the subsystem architecture

team’s quality cases.

• Stakeholders
− Produced by the assessment team
− Reviewed by the subsystem architecture team
− Maintained by the assessment team
− Used by the

− assessment team to identify defects associated with the subsystem architecture
team’s quality cases

− subsystem architecture team to understand what is expected of them during the
relevant subsystem architecture assessment meeting

128 CMU/SEI-2006-HB-001

• Inputs
− Architecture Assessment Method (tailored)
− Default Subsystem Architecture Assessment Meeting Checklist (example in Appen-

dix D of this handbook)
− Initial Kickoff Meeting Minutes

• Contents
− questions related to potential defects associated with the subsystem architecture over-

view
− questions related to potential defects associated with the quality cases (e.g., claims,

arguments, evidence)

6.3.2 Subsystem Architecture Assessment Preparatory
Materials

• Definition - preparatory materials that the architects provide to the assessment team be-
fore a subsystem architecture assessment meeting, allowing plenty of time for review

• Objectives
− Enable the assessment team to properly prepare for the assessment meeting.
− Maximize the effectiveness and efficiency of the assessment meeting.

• Stakeholders
− Produced by the subsystem architecture team
− Reviewed by the

− architecture team (prior to delivery to the assessment team)
− assessment team (prior to the assessment meeting)

− Maintained by the subsystem architecture team
− Used by the assessment team to properly prepare for participation in the subsystem

architecture assessment meeting

• Inputs
− architectural diagrams, models, and documentation
− architects’ knowledge of the architecture

• Contents
− a brief overview of the subsystem’s architecture (e.g., training materials)
− any significant updates to the architecturally significant requirements since the re-

quirements meeting
− quality cases (by quality factor):

− architects’ claims (quality goals and requirements)
− architects’ arguments (architectural decisions and rationales)
− evidence in the form of official architecture diagrams, models, or documents

showing the architecture’s support for its associated architecturally significant re-
quirements (either with relevant parts highlighted or an index identifying relevant
parts)

CMU/SEI-2006-HB-001 129

6.3.3 Subsystem Architecture Assessment Presentation
Materials

• Definition - presentation materials that the architects present during the subsystem ar-
chitecture assessment meeting

• Objectives
− Communicate the architect’s case that their architecture adequately fulfills the de-

rived and allocated architecturally significant requirements.
− Enable the assessment team to assess the architecture against its architecturally sig-

nificant requirements.

• Stakeholders
− Produced by the subsystem architecture team
− Reviewed by the top-level architecture team (prior to presentation)
− Maintained by the subsystem architecture team
− Used by the

− assessment team to understand the subsystem architecture and the architecture
team’s quality cases

− subsystem architecture team to make their quality cases that their subsystem archi-
tecture sufficiently supports its derived and allocated architecturally significant re-
quirements

• Inputs
− architectural diagrams, models, and documentation
− architects’ knowledge of the architecture
− subsystem architecture assessment meeting preparatory material (e.g., evidence)

• Contents
− brief overview of the subsystem’s architecture
− for each type of architecturally significant requirement (typically, quality attribute)

− claims that the subsystem architecture adequately supports its derived and allo-
cated architecturally significant requirements

− clear and compelling arguments justifying these claims in terms of the architec-
tural decisions made and their rationales

− summaries and typical examples of the evidence supporting these arguments
− Answers to questions posed by members of the assessment team

6.3.4 Subsystem Architecture Assessment Meeting Agenda
• Definition - the informal agenda for a single subsystem architecture assessment meeting

• Objective
Inform meeting attendees of meeting topics and associated times.

130 CMU/SEI-2006-HB-001

• Stakeholders
− Produced by the

− assessment team
− subsystem architecture team

− Not reviewed
− Not maintained
− Used by meeting attendees

• Inputs
− Architecture Assessment Procedure
− discussions

• Contents
− Meeting Topics and Times including

− Introductions and Meeting Logistics
− Quality Factors
− Quality Cases (by quality factor), including discussions and questions
− Schedule of Coming Events
− Meeting Wrap-Up

6.3.5 Subsystem Architecture Assessment Meeting Assessor
Notes

• Definition - informal notes that an individual assessor takes during the subsystem archi-
tecture assessment meeting

• Objectives
− Capture key findings.
− Capture significant observations.
− Capture recommendations.
− Capture personal action items.

• Stakeholders
− Produced by individual members of the assessment team who attend the subsystem

architecture assessment meeting
− Not reviewed
− Not maintained
− Used by the scribe of the assessment team, to use as input to the subsystem architec-

ture assessment meeting outbrief and meeting minutes

• Inputs
− Subsystem Architecture Assessment Meeting Checklist
− Subsystem Architecture Assessment Meeting Preparatory Materials
− Subsystem Architecture Assessment Meeting Presentation Materials
− architects’ answers to questions asked by members of the assessment team

CMU/SEI-2006-HB-001 131

• Contents
− For each type of architecturally significant requirement (typically quality attribute),

informal notes capturing any observations or key findings
− Recommendations regarding improving the

− architects’ quality cases
− architecture assessment method

− questions asked and answers given
− any other information that the individual assessors consider significant and worthy of

writing down

6.3.6 Subsystem Architecture Support Matrix
• Definition – a matrix that documents the architecture’s level of support for the different

types of architecturally significant requirements in terms of its subsystems’ support

The subsystem support matrix is developed after the architects have presented their
cases as part of the preparation for producing the subsystem architecture assessment
meeting outbrief and report.

• Objective

Communicate the assessment that each subsystem received for its support for each type
of architecturally significant requirement.

• Stakeholders
− Produced by the assessment team (typically the team leader)
− Reviewed by the assessment team
− Maintained by the assessment team
− Used by assessment team, to summarize the results of the assessment of the subsys-

tem architecture

• Inputs
− Subsystem Architecture Assessment Meeting Preparatory Materials
− Subsystem Architecture Assessment Meeting Presentation Materials
− architects’ answers to questions asked by members of the assessment team
− Subsystem Architecture Assessment Meeting Assessor Notes

• Contents
− Rows representing sub-subsystems
− Columns representing types of architecturally significant requirements (typically

quality factors)
− Cells containing color-coded assessment ratings

− Green – Architecture adequately supports achievement of all requirements.
The architecture team has presented clear and convincing arguments backed up by
sufficient underlying evidence to persuade the assessment team that the architec-
ture adequately supports the systems’ achievement of all of its allocated and de-
rived quality requirements.

132 CMU/SEI-2006-HB-001

− Yellow – Architecture may or may not adequately support achievement of all re-
quirements.
The architecture team has either not presented adequate arguments or not provided
adequate underlying evidence to completely persuade the assessment team that the
architecture adequately supports the systems’ achievement of all of its allocated
and derived quality requirements.

− Orange – Architecture does not adequately support achievement of all require-
ments.
The architecture team has not presented enough clear and convincing arguments
backed up by sufficient underlying evidence to persuade the assessment team that
the architecture adequately supports the systems’ achievement of all of its allo-
cated and derived quality requirements

− Red – Architecture makes it difficult but not impossible to achieve some require-
ments.
The architecture team has presented some arguments or provided some evidence to
convince the assessment team that the architecture makes if difficult (but not im-
possible) for the system to achieve all of its allocated and derived quality require-
ments.

− Black – Architecture prevents achievement of some requirements.
The architecture team has presented some arguments or provided some evidence
that has given the assessment team significant reasons to believe that certain as-
pects of the architecture will prevent the system from achieving some of its allo-
cated and derived quality requirements.

− N/A – The associated type of architecturally significant requirements is not appli-
cable to the associated sub-subsystem.

− TBD – Indicates that the sub-subsystem’s architecture is not ready for assessment.

Assessments Capacity Interoperability Performance Reliability Safety

Subsystem 1 Green Green Green Yellow Green

Subsystem 2 Green Yellow Red Green Green

Subsystem 3 Green N/A Yellow Green Yellow

Subsystem 4 TBD TBD TBD TBD TBD

… … … … … …

Subsystem N Green Green Orange Green Green

Table 1: Example Subsystem Support Matrix

6.3.7 Subsystem Assessment Meeting Outbrief
• Definition - an interim top-level summary of the results of a subsystem architecture as-

sessment meeting

CMU/SEI-2006-HB-001 133

• Objectives
− Communicate a summary of the assessment team’s interim results from the subsys-

tem architecture assessment meeting.
− Elicit comments and recommendations from the subsystem architecture team, espe-

cially to correct any factual misunderstandings before they are incorporated into the
meeting’s minutes.

• Stakeholders
− Produced by the assessment team
− Reviewed by the assessment team (internally before the draft is sent to the subsystem

architecture team)
− Temporary document that is not maintained, but rather superseded by the subsystem

architecture assessment meeting report
− Used by the

− assessment team to communicate their interim results to the subsystem architecture
team

− subsystem architecture team to understand the assessment team’s interim observa-
tions, findings, and recommendations related to the architecture team’s presenta-
tion

• Inputs
− Subsystem Architecture Assessment Meeting Preparatory Materials
− Subsystem Architecture Assessment Meeting Presentation Materials
− Subsystem Architecture Assessment Meeting Assessor Notes
− Subsystem Architecture Support Matrix
− architects’ answers to questions asked by members of the assessment team

• Contents
− Assessment grades for the subsystem architecture

− grade for overall subsystem architecture support for derived architecturally signifi-
cant types of requirements allocated to it

− grades for each sub-subsystem for each type of architecturally significant require-
ments (subsystem support matrix)

− Key Findings of the Subsystem Architecture Assessment
− Key Recommendations regarding improving the

− architects’ quality cases
− architecture assessment method

6.3.8 Subsystem Architecture Assessment Meeting Report
• Definition - a report that documents the results of the subsystem architecture assessment

meeting

This report is developed and distributed to its stakeholders within two to four weeks af-
ter the assessment meeting.

134 CMU/SEI-2006-HB-001

• Objectives
− Document the degree to which the subsystem architecture being assessed supports

the derived architecturally significant requirements allocated to it.
− Communicate this information and other results of the subsystem architecture as-

sessment meeting to all stakeholders.

• Stakeholders
− Produced by the assessment team (primarily a small subteam including the scribe)
− Reviewed by the assessment team (internally before the draft is sent to the subsystem

architecture team)
− Maintained by the assessment team (primarily for correction of factual errors)
− Used by the

− assessment team to communicate their final results to the subsystem architecture
team and to update the architecture assessment procedure

− subsystem architecture team to understand the assessment team’s key findings,
general observations, and recommendations related to the subsystem architecture

• Inputs
− Subsystem Architecture Assessment Meeting Preparatory Materials
− Subsystem Architecture Assessment Meeting Presentation Materials
− Subsystem Architecture Assessment Meeting Assessor Notes
− Subsystem Architecture Support Matrix
− Subsystem Architecture Assessment Meeting Outbrief
− architects’ answers to questions asked by members of the assessment team

• Contents
− Executive Overview, which is a top-level summary of the results of the subsystem

architecture assessment
− Introduction, which is an overview of the subsystem architecture assessment:

− Assessment Objectives
− Assessment Scope
− Assessment Participants

− Key Findings
− Major Recommendations
− Lessons Learned (concerning the assessment method)
− Appendices: Acronym List

6.4 System Architecture Quality Assessment
Summary Work Products

The following work products are produced for or during the system architecture quality as-
sessment summary meeting:

1. System Summary Subsystem Matrix

2. System Summary Meeting Presentation Materials

CMU/SEI-2006-HB-001 135

3. System Architecture Assessment Summary Meeting Agenda

4. System Architecture Assessment Summary Meeting Assessor Notes

5. System Architecture Quality Assessment Summary Report

6.4.1 System Summary Subsystem Matrix
• Definition - the matrix that summarizes the results of all of the subsystem assessments

• Objective

Provide a concise overview of the assessment results.

• Stakeholders
− Produced by the assessment team
− Reviewed by the assessment team
− Maintained by the assessment team (primarily for correction of factual errors)
− Used by the

− assessment team to provide input to the system summary meeting presentation ma-
terial and the system architecture quality assessment summary report

− management team to get subsystem-specific architecture quality information to
identify architectural risks and to determine where to allocate resources

− top-level architecture team to get subsystem-specific architecture quality informa-
tion to identify architectural risks and to determine where to allocate resources

• Inputs
− Subsystem Architecture Assessment Reports
− Subsystem Architecture Support Matrices

• Contents
− Collection of Subsystem Architecture Support Matrices

6.4.2 System Summary Meeting Presentation Materials
• Definition - the preparatory materials for the summary system architecture assessment

meeting

• Objective
Allow invitees of the summary system architecture assessment meeting to prepare for
the meeting by seeing an initial version of the materials to be presented during the meet-
ing.

• Stakeholders
− Produced by the assessment team
− Reviewed by the architecture team (prior to delivery to the meeting attendees)
− Maintained by the assessment team (primarily for correction of factual errors)
− Used by the

− assessment team to provide input to the system summary meeting presentation ma-
terial and the system architecture quality assessment summary report

136 CMU/SEI-2006-HB-001

− management team to get subsystem-specific architecture quality information to
identify architectural risks and to determine where to allocate resources

− top-level architecture team to get subsystem-specific architecture quality informa-
tion to identify architectural risks and to determine where to allocate resources

• Inputs
− Subsystem Architecture Assessment Reports
− Subsystem Architecture Support Matrices
− System Summary Subsystem Matrix

• Contents
− Restatement of Assessment Objectives
− Summary of Assessment Method including approaches used to summarize the quali-

ties of the subsystem architectures
− Summary of the Quality of the Architectures of the Subsystems
− Summary of the Quality of the System Architecture
− Initial Lessons Learned

6.4.3 System Architecture Assessment Summary Meeting
Agenda

• Definition - the informal agenda for the summary system architecture assessment meet-
ing

• Objective

Inform meeting attendees of meeting topics and associated times.

• Stakeholders
− Produced by the assessment team
− Not reviewed
− Not maintained
− Used by the meeting attendees

• Inputs
− Architecture Assessment Procedure
− discussions

• Contents
− Meeting Topics and Times including

− Statement of Assessment Objectives
− Overview of Assessment Method
− Summary of the Quality of the System Architecture in terms of the quality of the

architectures of the subsystems
− Final Lessons Learned
− Meeting Wrap-Up

CMU/SEI-2006-HB-001 137

6.4.4 System Architecture Assessment Summary Meeting
Assessor Notes

• Definition – informal notes that an individual assessor takes during summary system
architecture assessment meeting

• Objectives
− Capture observations and recommendations made by the meeting attendees for im-

proving the
− final System Architecture Quality Assessment Summary Report
− architecture assessment procedure
− architecture assessment training materials
− account of personal action items

• Stakeholders
− Produced by individual members of the assessment team that attend the system archi-

tecture assessment summary meeting
− Not reviewed
− Not maintained
− Used by the scribe of the assessment team as input to the final System Architecture

Quality Assessment Summary Report

• Inputs
− observations and recommendations made by the meeting attendees

• Contents
− Observations and Recommendations for improving the

− System Architecture Quality Assessment Summary Report
− Architecture Assessment Procedure
− Architecture Assessment Training Materials

− Any other information that the individual assessor considered significant and worthy
of writing down

6.4.5 System Architecture Quality Assessment Summary
Report

• Definition – the report that documents the overall quality of the system architecture

• Objectives
− Document the quality of the system architecture in terms of the quality of the archi-

tectures of its subsystems.
− Summarize the

− assessment objectives
− system architecture quality assessment method used
− assessment lessons learned

− Produced by the assessment team

138 CMU/SEI-2006-HB-001

− Reviewed by the
− architecture team (prior to delivery to the assessment team)
− assessment team (prior to the assessment meeting)

• Inputs
− Subsystem Architecture Assessment Reports
− Subsystem Architecture Support Matrices
− System Summary Subsystem Matrix
− System Summary Presentation Materials
− Discussions and inputs from the assessment team and stakeholders including the sys-

tem and subsystem requirements and architecture teams

• Contents
− Statement of Assessment Objectives
− Overview of Assessment Method
− Summary of the Quality of the System Architecture in terms of the quality of the ar-

chitectures of the subsystems
− Final Lessons Learned

CMU/SEI-2006-HB-001 139

140 CMU/SEI-2006-HB-001

7 QUASAR Lessons Learned

During the development and initial use of the successive versions of this system architecture
quality assessment method, the lessons documented in this section were learned and have
been incorporated into the current version of the method.

7.1 System Architecture Assessment Initiation
Phase

The following lessons are related to the System Architecture Assessment Initiation Phase of
the QUASAR method:

1. Ensure adequate assessment team membership.

Lesson: If practical, ensure that the assessment team includes at least one member who
is familiar with the QUASAR method and quality cases. Also ensure that the assessment
team includes one or more members who are familiar with the domain of the system (or
subsystems) being assessed. Finally, ensure that the assessment team includes one or
more members who are familiar with the system and if possible, its architecture.

Rationale:
a. Independent architecture quality assessments are relatively new.
b. It is difficult to successfully implement an assessment method without access to at

least one person with prior experience.
c. Much of a system’s architecture is greatly impacted by the type of system being ar-

chitected. For example, there is a great difference between hard real-time, safety-
critical embedded systems and Web-based financial systems.

d. Having at least one member who is familiar with the system and its architecture
makes it easier to determine what information to ask for if the architects are unclear
as to what makes good evidence.

2. Provide architecture assessment training early.

Lesson: The assessment team should provide an initial training session for members of
both the assessment team(s) and the top-level architecture team on the objectives,
ground rules, and method (e.g., tasks, techniques, and work products) for performing the
architecture quality assessment. This training should be of short duration. The timing of
this training should be appropriate. The training should concentrate on the generalization
of safety case concepts as applied to system architecture quality assessment: the archi-
tects’ claims that their architecture has sufficient quality, their clear and compelling ar-

CMU/SEI-2006-HB-001 141

guments supporting these claims, and legitimate evidence justifying belief in these ar-
guments.

Rationale:
a. The assessment method will probably be new to the architects and most members

of the assessment team.
b. The training helps ensure that the members of these teams will

− understand their responsibilities and how to perform their tasks
− know what information is basic information, what information is legitimate and

appropriate as evidence supporting the architects’ arguments, and how to differ-
entiate the two

− make fewer mistakes when applying the method
− be more efficient in achieving the goals of the assessments

c. The top-level architecture team typically represents all of the lower architecture
teams during
− tailoring of the method for use on a series of assessments
− accepting of (i.e., committing to fulfill) their responsibilities under the assess-

ment method

3. Provide early architecture development process training.

Lesson: The top-level architecture team should provide an initial training session on the
architecture development and maintenance process including the following:
a. architecting tasks, techniques, and conventions (standards, procedures, guidelines)
b. architecture roles and responsibilities
c. architecture work products including types (e.g., models, views, documents), pur-

poses, conventions, etc.
d. The architects should clearly show how the architecture will evolve in an incre-

mental development cycle and how the architecture varies across variants within a
product line. This should include how they identify increments and variants within
requirements repositories, requirements and architecture models, and requirements
and architecture documents. This is difficult to do with today’s immature tools.

Rationale:
a. This training is quite valuable to members of the assessment team in terms of set-

ting their expectations.
b. This training helps members of the assessment team determine if the set of the ar-

chitects’ work products (especially views) is both adequately complete and also ap-
propriate (e.g., not confusing requirements models such as mistaking use case mod-
els for architecture models).

c. If performed sufficiently early in the development cycle, providing this training can
influence the
− requirements engineers’ method, thereby enabling them to properly engineer the

architecturally significant requirements that drive the architecture
− architects’ method for developing the architecture, thereby enabling them to

o produce the arguments and evidence needed for the assessment as a natural
part of their architecture method

142 CMU/SEI-2006-HB-001

o avoid having to develop significant documentation for the assessments
o decrease the impact of the assessments on their busy schedules

− A large system is too big and complex to be developed using the waterfall devel-
opment cycle. The use of an incremental, iterative, and parallel development cy-
cle means that different parts of the architecture will reach different levels of ma-
turity at different times.

4. Set architecture assessment objectives.

Lesson: During the initial kickoff meeting, the assessment team(s) and top-level archi-
tecture team should develop a consensus regarding the objectives of the set of assess-
ments of the system’s overall architecture.

Rationale:
a. Architecture assessments can have different objectives.
b. These objectives influence the importance and level of detail of the assessments.
c. A consensus on the assessment objectives enables the teams to

− agree on the proper tailoring of the assessment method
− set the overall assessment scope

5. Set overall assessment scope.

Lesson: It is important to set the scope of the set of assessments of the overall system
architecture (or that subset of this architecture that is intended to be assessed). During
the initial kickoff meeting, the top-level architecture team and the assessment team
should agree on the scope of the overall assessment in terms of the intended:
a. specific architectural elements (e.g., subsystems) to be assessed
b. level of detail within (i.e., average/maximum depths in the hierarchical architecture

below) these elements to which the architecture will be assessed (e.g., subsystems
and sub-subsystems)

c. default, specific types of architecturally significant requirements (e.g., quality fac-
tors) against which to evaluate these architectural elements

Rationale:
a. This knowledge is needed to estimate the total resources and costs to be allocated to

the assessment.
b. This knowledge is needed to develop an initial general schedule for the assessments

to ensure that the architectural elements being assessed are sufficiently complete or
important to justify the cost and effort needed to perform a proper assessment.

c. Setting the overall scope helps to ensure that the system will satisfy the customer’s
expectations and meet the customer’s needs.

d. Subsystems of the subsystems to be assessed may
− be at the level of design, rather than architecture and thus be out of scope
− not be sufficiently complete or important to justify the cost and effort needed to

perform a proper assessment

6. Agree on definitions.

Lesson: During the requirements meeting, it is critical for the architecture and assess-
ment teams to agree on the exact definitions of the quality factors (and their subfactors)

CMU/SEI-2006-HB-001 143

to be used as the basis for the architecture assessment. It is also important to agree on
what the corresponding quality requirements are. Although the importance of different
quality factors and quality requirements often differs from subsystem to subsystem, dif-
ferent subsystems should not have different definitions or “interpretations” of the quality
factors.

Rationale:
a. In practice, there is often confusion between the definitions of quality factors and

the definition of the associated quality factor requirements.
b. Although international standards defining quality factors exist, different people and

organizations typically have different definitions of quality factors in practice.
c. These definitions may legitimately vary within large systems because of the appli-

cation domains of different architectural elements.
d. The use of different definitions leads of confusion, miscommunication, and the

waste of time and effort. For example, some people may not understand the differ-
ences between availability, reliability, and stability. Others may confuse the stability
of a system in terms of system failure with the stability of the system’s architecture
in terms of resistance to change in spite of requirements change.

7. Primarily assess by subsystems within tiers.

Lesson: Assessments should be performed on individual architectural elements within
the architecture’s hierarchical decomposition tier structure (e.g., system of systems, sys-
tems, subsystems, sub-subsystems, etc.).

Rationale:
a. Individual architectural elements (e.g., subsystems) tend to provide a reasonable

size for assessments in terms of limiting the duration of individual assessments.
b. Clarifying the tier levels make it easier to differentiate architecture (tier n) versus

detailed design (tier n+1) as well as requirements (from tier n-1).
c. It would be confusing to try to assess the architecture across too many tier levels.

Exceptions:
a. Sometimes, multiple subsystems are highly related in terms of architectural compo-

nents, mechanisms used to support the architecturally significant requirements, and
architects. Therefore, it may be possible to assess two architectural elements during
a single week.

b. It is often important to perform a small number of “deep-dives” to verify actual ar-
chitectural support via a subsystem’s sub-subsystems.

8. Ensure adequate resources and planning.

Lesson: It is important that all teams include assessments in their team plans and team
schedules so that they can ensure that their members are available and have adequate
funding to support the assessments.

7.2 Subsystem Requirements Review Phase
The following lessons are related to the Subsystem Requirements Review Phase of the
QUASAR method:

144 CMU/SEI-2006-HB-001

1. Hold requirements review prior to architecture assessment.

Lesson: For each architectural element being assessed, the relevant development team(s)
(i.e., requirements team and/or architecture team) should perform an initial requirements
review for the assessment team. This review should be held a sufficient amount of time
prior to the architecture assessment.

Rationale:
a. Such a review helps ensure the existence of the architecturally significant quality

goals and requirements.
b. It helps ensure a common understanding of these goals and requirements.
c. It minimizes confusion over and misinterpretation of the requirements and use

cases.
d. Listing the driver requirements after listing the architectural decisions is of little

value, especially if the requirements are merely identified by number. However,
even if the requirements are presented and agreed upon during an initial require-
ments/driver meeting, it helps to briefly list them prior to describing how the archi-
tecture supports the quality factors so as to provide a clear rationale/justification for
the architecture decisions.

2. Identify architecturally relevant requirements.

Lessons: This is not a requirements assessment, but rather an architecture assessment.
Cover the requirements only to the extent that the allocation of requirements to major
architectural elements needs to be understood. Concentrate on the architecturally signifi-
cant requirements so that the architectural support for these requirements can be as-
sessed.

Rationale:
a. It is very difficult to determine if the architecture sufficiently supports a quality fac-

tor without well-specified requirements specifying a required minimum measurable
level of quality. For example, just how scalable must the element be and in what
way? Without knowing how good the architecture must be, it is very difficult to ob-
jectively determine if the architecture is good enough.

3. Concentrate on quality requirements.

Lesson: During the requirements meeting, it is important to ensure that the architecture
and assessment teams understand the differences between quality factors and their asso-
ciated quality requirements that have (or should have) been derived and allocated to the
subsystem being assessed. It is also important to accept these quality requirements as re-
quirements and not merely as “assessment criteria.”

Rationale:
a. The definition of a quality factor should not change from subsystem to subsystem.
b. A quality factor is not a requirement, but merely a characteristic of the system or

subsystem that may or may not be there. It does not in and of itself imply any im-
pact on the subsystem unless there is a requirement for the subsystem to exhibit that
quality factor to a specific degree.

CMU/SEI-2006-HB-001 145

c. Although there is a cost associated with requirements because of the associated
verification effort, calling quality requirements “assessment criteria” minimizes
their influence on the architecture.

d. Lack of agreement on the relevant quality requirements allocated to the architecture
means that these requirements do not end up being derived and allocated to the ar-
chitecture. This makes it difficult to assess the architecture against these non-
derived, non-allocated requirements.

4. Set individual assessment scope.

Lesson: It is important to set the scope of each assessment. At the requirements meeting
prior to the assessment meeting, the architecture and assessment teams should agree on
the scope of the assessment in terms of the
a. specific architectural elements (e.g., subsystems) to be assessed
b. level of detail within (i.e., depth in the hierarchical architecture below) these ele-

ments against which the architecture will be assessed (e.g., subsystems and sub-
subsystems)

c. specific types of architecturally significant requirements (e.g., quality factors)
against which to evaluate these architectural elements

Rationale:
a. All of the subsystems may not be sufficiently complete or important to justify the

cost and effort needed to perform a proper assessment. It makes little sense to
evaluate a subsystem if its associated requirements are still largely volatile and un-
specified.

b. Subsystems of the subsystems to be assessed
− may be at the level of design rather than architecture and thus be out of scope
− may not be sufficiently complete or important to justify the cost and effort

needed to perform a proper assessment
− have different quality factors, the relevance and importance of which may vary

from subsystem to subsystem
c. Setting the scope of the assessment enables the

− architecture team to minimize the amount of effort required to prepare for the as-
sessment meeting by limiting the amount of preparatory documentation (e.g.,
presentation materials) they must develop for the assessment meeting

− assessment team to minimize the amount of effort required to prepare for the as-
sessment meeting by restricting their reading to relevant architectural documen-
tation, diagrams, and models

− assessment team to create an appropriate assessment notes template that is lim-
ited to the specific subsystems to be assessed

5. Select architecture-appropriate quality factors.

Lesson: Determine the architecturally significant quality factors against which to evalu-
ate an architectural element during its associated requirements meeting. At the same
time, determine the relative priorities of these selected quality factors.

Rationale:
a. Intraoperability can be as (or more) important as interoperability when a system in-

tegrator is integrating subsystems provided by multiple subcontractors or vendors.

146 CMU/SEI-2006-HB-001

b. Forcing all architecture assessments to be made against the same quality factors of-
ten forces the architects to stretch the meaning of a relatively inappropriate quality
factor so that they can “get a check in the box.”

c. Forcing architects to prepare for and undergo an assessment against an inappropri-
ate quality factor gives the architects the impression that the assessment is irrele-
vant and largely a waste of time.

d. The most important quality factors in terms of their impact on the architecture vary
from architectural element to architectural element based on its application area
(e.g., aircraft vs. trainer).

6. Train subsystem architecture team.

Lesson: Break the assessment of a subsystem’s architecture into two parts: an initial re-
view to train the assessors on the architecture followed by multiple assessments to test
portions of the architecture.

Rationale: It is good to give the architects (at an early meeting)
a. examples of expected arguments (i.e., architectural decisions)
b. examples of types of evidence (e.g., context diagram for interoperability)
c. checklists for verifying their readiness for the assessment meeting
d. template for presentations

7. Select an adequate set of relevant quality factors.

Lesson: Select an adequate set of quality factors that is appropriate for the subsystem
being assessed. Ensure the development of a consensus on the quality factors among all
teams (i.e., assessment, requirements, and architecture) that are stakeholders in a subsys-
tem assessment. If necessary, resort to a final decision by an assessment authority (e.g.,
assessment team leader).

Rationale: Because of the assessment cost in terms of effort and availability of critical
personnel, there is a strong tendency (especially within the architecture team) to limit the
scope of the assessments in terms of the quality factors on which quality cases are de-
veloped, sometimes beyond that which is appropriate. Whereas the subsystem architec-
ture team may feel that they are the only ones qualified to decide regarding their subsys-
tem, other teams such as the requirements team, system architecture team, and
assessment team (representing the acquisition and user organizations) are also major
stakeholders in ensuring that important quality factors are not omitted.

Differences between subsystems provide important, legitimate reasons for choosing dif-
ferent quality factors on which to base quality cases. The quality factors often need to be
expanded to include programmatic constraints such as budget (affordability) and sched-
ule limitations.

Finally, there will be significant argumentation and loss of collaboration if a consensus
is not developed early.

8. Ensure understanding of relevant quality factors.

Lesson: It is critical for all meeting attendees to understand the quality factors and the
architectural support for each of them.

CMU/SEI-2006-HB-001 147

Rationale: Sometimes attendees become confused about the meanings of the different
quality factors or what documentation constitutes valid evidence. This can lead to argu-
ment and evidence that does not actually support the associated requirements. For ex-
ample, testability is the degree to which the architecture supports testing rather than how
much testing one intends to perform. Plans to use a testing tool are also not evidence that
the system architecture adequately supports testability.

9. Develop requirements trace.

Lesson: The architects should create a trace from the requirements to the associated
quality factors.

Rationale: Traces are very useful to ensure that the architecture supports the associated
quality-factor-related requirements. Preparing a requirements trace from the quality-
relevant requirements to the individual quality factors helps the assessment team deter-
mine potential holes in the requirements and the relevant drivers of the architecture.

7.3 Subsystem Architecture Assessment Phase
The following lessons are related to the Subsystem Architecture Assessment Phase of the
QUASAR method:

1. Provide initial overview of subsystem architecture.

Lesson: The subsystem architecture team should start the subsystem architecture as-
sessment meeting by presenting a top-level overview of the subsystem architecture to
the assessment team.
a. Keep overview short.

Lesson: Keep the initial overview brief.
Rationale: A short briefing providing an overview of the subsystem architecture
will not take an excessive amount of time away from the architects’ presentation of
their quality cases. In fact, it will save time by ensuring that all assessors have the
same minimal foundation in the subsystem, the architecture of which is being as-
sessed.

b. Present primary diagrams.
Lesson: This overview should include the primary diagrams documenting the major
architectural components of the subsystem and their major relationships (e.g., col-
laboration diagram, network diagram, and context diagram).
Rationale: Because of scheduling conflicts, not all of the assessors (especially sub-
ject matter experts brought in specifically for the assessment) will have had the op-
portunity to adequately review the subsystem architecture prior to the meeting. Be-
ing primary evidence supporting the architects’ arguments, these diagrams set the
context for the quality cases that follow. These diagrams are important evidence
that back up the architects’ arguments by greatly clarifying some of the most im-
portant architectural decisions.

148 CMU/SEI-2006-HB-001

c. Present primary decisions.
Lesson: This initial overview could also include a brief listing of the major architec-
tural policy decisions (e.g., architecture patterns and mechanisms) that are to be
flowed down into these lower level architectural components (e.g., sub-subsystems
and associated processes).
Rationale: This listing helps provide a good introduction to the architects’ argu-
ments in their quality cases.

d. Mount diagrams on walls.
Lesson: The subsystem architecture team should mount large copies of these pri-
mary architectural diagrams on the walls of the assessment meeting room.
Rationale: The assessors can easily refer to these diagrams during the later presen-
tations and during the meeting breaks.

e. Highlight primary architectural decisions.
Lesson: If practical, the subsystem architecture team should clearly identify their
major relevant architectural decisions on these wall-mounted diagrams (e.g., use
highlighters to document relevant hardware redundancy for reliability cases or clas-
sified data flows for security cases).
Rationale: The entire diagram is not relevant to the arguments of specific quality
cases. Marking the important parts of the diagrams makes it easier for the architects
to convey their arguments to the assessors. Manual marking of the relevant quality
case perspectives of the architectural views is appropriate because tool support to
provide these perspectives is rare.

f. Leave diagrams up.
Lesson: These important diagrams should left up on the walls during the entire
meeting. If the assessors are going to develop their outbrief and the initial parts of
their meeting report in the same room where the assessment meeting it taking place,
then these diagrams should remain on the walls until the assessment team leaves.
Rationale: The assessors need to refer to these diagrams often, and the large size of
these diagrams makes it easy for multiple assessors to gather around them and dis-
cuss the architecture and the architects’ decisions.

2. Focus on assessing the existing architecture.

Lessons: It is important to ensure that the assessment team stays on topic so that the ar-
chitectural assessment does not devolve into an assessment of the requirements, design,
or implementation. Although occasional deep dives into the design may be used as a
way to validate the quality of the architecture in terms of its implementability, care must
be taken to ensure that excessive time is not wasted going down an interesting but rela-
tively unimportant rabbit hole.

Rationale:
a. Technical members of the assessment team have a natural inclination and curiosity

that can lead the assessment off track and out of scope.

CMU/SEI-2006-HB-001 149

b. Members of the architecture team are typically very busy and do not have unlimited
time to allocate to an architecture assessment. They may legitimately resent what
they might consider to be a waste of valuable time. They may also fear receiving a
negative assessment on something (e.g., design or implementation) that is not yet
ready for assessment and for which they have not adequately prepared.

3. Avoid a “trust me” approach.

Lesson: It is important that the architects understand that they must prove their case by
providing an adequate amount of actual evidence to back up their arguments (i.e., show
that they have in fact made the architectural decisions they say they have and show that
these decisions were sufficient to ensure that the architecture adequately supports its de-
rived and allocated requirements).

Rationale: Not relying solely on the architect’s verbal description is not an accusation of
lying but rather merely due diligence on the part of the assessment team.

4. Determine if arguments and evidence are incomplete.

Lesson: Members of the assessment team may discover that the architects have inadver-
tently not provided all of the arguments and evidence that they could have. For example,
if the architects claim that their architecture adequately supports testability in terms of
testing support for fault tolerance, they may only think of how the architecture enables
them to insert failures, whereas other properties of the architecture (e.g., levels of modu-
larity and cohesion, well-defined interfaces, publish-subscribe, and test ports) may also
make it easier or more difficult to perform subsystem (acceptance), integration, and sys-
tem (functional, fault tolerance) testing.

Rationale: Quality cases are often incomplete due to missing arguments and evidence
because of unfamiliarity with quality cases and exactly what is considered to be appro-
priate argument and evidence. Due to their greater familiarity with the QUASAR
method, the assessment team (especially the subsystem liaison) can often identify miss-
ing parts of quality cases.

5. Use best quality case presentation order.

There are two main ways that the presentation of the architects’ cases that their architec-
ture supports its derived and allocated architecture-related requirements:
a. By subsystem, then by requirements type within subsystem.
b. By requirements type, then by subsystem support within requirements type.

Lesson: The best approach is to organize the presentation first by requirements type
(e.g., quality factor) and then by subsystem within the subsystem, the architecture
of which is being assessed.
Rationale: Assessing the architecture against the quality attributes is much more
successful when performed first by quality attribute followed by subsystem support
for the specific quality attribute as compared to the subsystem first followed by
quality attribute within subsystem. The quality attribute first approach forces the
architects to better address the individual quality attributes and to not rely on pre-
senting preexisting general subsystem documentation, much of which is not rele-

150 CMU/SEI-2006-HB-001

vant to the scope of the assessment. It also makes the assessors’ job of producing a
report sorted by quality attribute much easier.

6. Present architecture engineering tradeoffs.

Lesson: It is important for the architects to address the engineering tradeoffs they make
between the different quality factors and the engineering tradeoffs they make between
subsystems (e.g., allocating limited resources utilized by different subsystems such as
timing budgets).

Rationale: Quality factors are often somewhat incompatible in the sense that it is diffi-
cult to increase two simultaneously. For example, some of the techniques used to in-
crease performance (local optimization) may decrease maintainability (e.g., local opti-
mization for the sake of improving performance may increase coupling and decrease
modularity, thereby decreasing maintainability). Similarly, increasing security may de-
crease usability (e.g., by requiring more frequent identification and authentication).
Similarly, the system architecture not only consists of the architecture of the individual
subsystems, it also addresses how these subsystems collaborate to meet the requirements
of the overall system. Therefore, it is not sufficient to concentrate on individual quality
factors and individual subsystems.

7. Provide only some scenarios as evidence.

Lesson: All evidence should not be given in the form of scenarios.

Rationale: While using single scenarios is a way of making quality requirements more
meaningful, they often do not address all of the subsystems, thereby providing incom-
plete arguments and evidence than what is needed.

8. Present structure before functional views.

Lesson: The architects should present the structural architecture in terms of element
names, responsibilities, and relationships before they describe the functional behavior of
how they collaborate to fulfill their assigned use cases. The structure needs to address
the hardware structure, software structure, and deployment of software to hardware. The
architects should present an adequately complete set of appropriate views, ensuring that
no single view dominates the architecture documentation.

Rationale: By emphasizing the components of the architecture and how they are related,
it makes it easier to understand how these components collaborate to meet their allo-
cated requirements. Otherwise, the architects may instead concentrate on a “logical ar-
chitecture” of functions that the system must perform, rather than the actual architecture
that helps implement these collections of functional requirements. Also, emphasizing
functional views of the system may underemphasize the system’s required qualities and
how the system’s architecture helps the system provide them.

9. Keep evidence within scope.

Lesson: Evidence presented during the architecture assessment meeting should remain
within the scope of the assessment:

CMU/SEI-2006-HB-001 151

a. Evidence presented by architects
Discussion: In practice, architects may not understand what kinds of documents
make legitimate evidence to back up their arguments. Sometimes in their haste, the
architects provide all of the documentation they have produced related to archi-
tecting (such as planning or procedural documentation), regardless of whether it
provides evidence concerning the architecture’s actual existing support for helping
the subsystem achieve its derived and allocated quality requirements.
Lesson: As part of their quality cases, the architects should take care to only present
legitimate evidence that supports their arguments (i.e., is within the scope of the as-
sessment).
Rationale: Providing irrelevant material only wastes the time they took to provide it
and the time the assessors took to review it. The assessors only have limited time
during which to prepare for the assessment and reading irrelevant material prevents
them from reviewing the relevant evidence. It also tends to give them the (poten-
tially wrong) impression that the architects either do not have adequate evidence to
back up their arguments or do not understand the documents they have.

b. Evidence requested by assessors
Discussion: During the assessors’ questioning of the architects, the assessors may
become aware of additional evidence that was not presented or provided to them.
For example, an architect may raise a new argument when questioned about an as-
pect of the architecture, and the assessors may then legitimately ask the architect
for supporting evidence. However, it is not uncommon for technical assessors to
find quite interesting certain information mentioned in passing even though it does
not directly support the architects’ arguments.
Lesson: To the extent appropriate and practical, the assessors should carefully limit
their requests for additional evidence to evidence that is actually relevant to the ar-
chitects’ arguments concerning the architecture’s actual support for the subsystem
achieving its quality goals and meeting its quality requirements.
Rationale: Due to their busy schedule and the limited time they have available to
support the assessment, the architects should legitimately point out that the re-
quested documentation (e.g., managerial, process, detailed design, or implementa-
tion documentation) is outside the scope of the assessment and need not be pro-
vided.
Counterargument: Because there are rarely clear, verifiable derived quality re-
quirements to drive the architecture, the assessors sometimes must use process
documentation to see what the contractor is using to drive their architecture (e.g.,
the reliability process used to determine the probability of software failure to de-
termine how reliable the architectural components must be). Similarly, the asses-
sors typically should report any out-of-scope defects they may serendipitously find.

152 CMU/SEI-2006-HB-001

10. Ensure availability of actual architects.

Lesson: It is very useful to have the actual subsystem architects available during the as-
sessment meeting. Trying to save the subsystem architects time by having only the pri-
mary system chief architect present their quality cases for them is not an effective way to
run the assessment meeting.

Rationale: Having the subsystem architects present their own quality cases is best be-
cause the subsystem architects
a. understand their own architectures better then the chief architect does
b. are immediately available to answer detailed questions posed by the assessment

team
c. can quickly locate and display the specific relevant information within the large

amount of evidentiary documentation

11. Use existing documentary evidence.

Lesson: To the extent practical, the architects should present their quality cases using
existing architectural documentation.

Rationale: Architects should have documented their architectural decisions and associ-
ated rationales as a normal part of their architecture process. By including this existing
official (e.g., under configuration control) documentary evidence in their quality cases,
architects both minimize the work needed to prepare for an assessment and ensure that
the actual architecture is presented.

Unfortunately, some architects either may not do an adequate job of documenting their
architecture in the first place or else they may not keep their architectural documentation
up-to-date as their architecture naturally evolves. In this latter case, the architects might
try to produce some informal, “quick-and-dirty” PowerPoint presentations describing
their architectures just for the assessment. They might also try to present existing docu-
mentation that does not describe the actual architecture, but instead plans and procedures
that document their original intended approach for producing the architecture.

12. Take architecture maturity into account.

Lesson: It is important for the assessment team to know the status/maturity of the archi-
tectural elements being assessed.

Rationale: For example, if an element’s requirements are still largely unspecified, it is
inappropriate to try to assess the quality of its architecture.

13. Emphasize assessment over advice.

Lesson: Assess the architecture by listening to the architects’ presentation of existing
evidence and asking questions for clarification rather than spending significant amounts
of time trying to train the architects in what is important for them to know.

Rationale: The primary duty of the members of the assessment team is to assess the
quality of the architecture. As technical experts, they will be tempted to try to solve any
perceived deficiencies rather than just note them. There is insufficient time during as-

CMU/SEI-2006-HB-001 153

sessment meetings to solve architectural weaknesses, members of the assessment team
probably do not have adequate depth of knowledge and experience in the subsystem be-
ing assessed to make optimal recommendations, and it is not their responsibility to archi-
tect the subsystem being assessed; that is the responsibility of the architecture team.

14. Ensure reasonable assessment size.

Lesson: The assessment should be decomposed into multiple, small assessments so that
individual assessments can be performed in a reasonably small number of days.

Rationale:
a. The members of the architecture and assessment teams are typically extremely busy

with other critical tasks.
b. They typically cannot afford to spend more than a few consecutive days supporting

an assessment.
c. The assessments are typically locally located with the architects, and if the asses-

sors must travel to the location of the assessments, assessments that last longer than
a few days may require the assessors to stay over the weekends, thereby increasing
assessment cost and imposing on the assessors.

7.4 Miscellaneous Lessons
1. Produce meeting preparation information.

To make the meetings more effective, it is important to ensure that the architecture team
supplies preparatory materials to the assessment team and that the assessment team re-
views this information. In one case, the assessment was made much more difficult be-
cause much of the documentation required as evidence was not supplied as early as
originally required by the assessment method, as early as verbally promised by the con-
tractor, or at all.

2. Decompose into two-person assessment subteams.

During the assessment meeting and subsequent development of the assessment report,
the assessment team should be decomposed into two-person subteams, with each con-
centrating on different groups of quality factors. They should be assigned quality factors
based on their experience, training, and expertise in the quality factors.

Rationale:
a. This use of subteams increases the productivity of the assessment team by enabling

them to work in parallel, especially during the generation of the assessment report.
b. This also helps improve the completeness of the assessment by allowing evaluators

to concentrate on evaluating the architecture’s support for specific quality factors.

3. Provide appropriate preparatory information.

It is important to ensure that the information provided by the architecture team to the as-
sessment team is appropriate. Appropriate information includes (1) general information
needed to get up to speed on the architectural element being assessed, (2) architecturally
significant requirements (i.e., requirements such as quality factor related requirements

154 CMU/SEI-2006-HB-001

that drive the architecture, and (3) official project documentation (e.g., architecture dia-
grams, models, and documents) that captures the architectural decisions that support the
achievement of these architecturally significant requirements. Provide indexes and/or
highlighting of relevant information buried within large amounts of preparatory eviden-
tiary evidence. Preparatory information should not include planning or process docu-
mentation.

Rationale:
a. Plans for developing the architecture may show intent, but they do not demonstrate

actual support for the architecturally significant requirements.
b. Procedures used to develop the architecture also do not demonstrate actual support

for the architecturally significant requirements. Similarly, test plans and procedures
do not clearly provide evidence for the architecture’s support for testability.

c. Design and implementation documentation is typically not appropriate preparatory
information because it does not directly address architectural decisions and their ra-
tionales. Any indirect architectural information that exists will be buried within
large amounts of irrelevant information and be difficult to identify and interpret.

d. An index to relevant information or highlighting of relevant information makes it
easier to identify the relevant information within the preparatory materials, espe-
cially evidentiary documentation.

e. Using indexes and highlighting enables assessors to avoid wasting time searching
for relevant information or reading irrelevant information.

4. Take incremental architecture development into account.

In an iterative, incremental development process, it can be difficult to determine what
architecture decisions apply to which blocks and releases.

5. Ensure adequate pre-meeting preparation.

The assessors cannot properly prepare for an assessment by reading the pre-assessment
documentation unless it is made available with enough time to review before the as-
sessment meeting.

6. Apply different emphasis at different levels.

It is difficult to obtain architectural information that supports a quality attribute assess-
ment when starting at the top level of a large and complex software-intensive program or
system. We need more than just an allocation of use case steps to very large domains and
subsystems. We also need information about such topics as performance, safety, security,
reliability, robustness, internationalization, etc. At the top levels, we need to see quality
policies (e.g., safety policies at tiers 2–4) if the associated architectural mechanisms
(e.g., safety mechanisms such as standard safeguards at tier 5) are at lower levels.

7. Differentiate observations and findings.

The assessment report should properly differentiate between observations and findings.
The sections and subsections should be numbered so that it is easier to identify the top-
ics of discussion.

CMU/SEI-2006-HB-001 155

8. Differentiate architecture from design.

It is important to clarify the difference between architecture and detailed design and re-
main at the architecture level.

9. Use scenarios as tests.

Use scenarios as test cases to verify that the architecture does in fact support specifica-
tion compliance. Do not use scenarios to introduce and explain the basic architecture but
rather to test the architecture’s ability to fulfill its requirements and drivers after the ar-
chitecture has been presented. Review the structural and functional architecture but ver-
ify the architecture via scenario test cases. Scenarios need to test the hard-
ware/deployment architecture as well as the software architecture, especially with regard
to fault tolerance, security data flow, performance, etc.

10. Understand that not all tiers are equal.

Different architectural elements (e.g., subsystems) at the same tier in the architecture are
typically not all of equal size, complexity, and criticality. For example, a small software
configuration item and a major hardware/software subsystem might reside at the same
level within the overall aggregation hierarchy of the system architecture. This means that
the scope of the architecture assessments should not be restricted to all architectural ele-
ments at the same tier level (e.g., tier 4 or tier 5).

156 CMU/SEI-2006-HB-001

8 Future Directions

As with most endeavors, the QUASAR method is not perfect. There are several areas that
deserve further research, lessons learned from trial use, and potential modifications to im-
prove the method. These include

1. Ensure architectural integrity across multiple subsystems.

The current QUASAR method emphases the assessment of system architectures in terms
of the assessment of individual subsystem architectures, the assessment of these subsys-
tem architectures in terms of the assessment of their sub-subsystem architectures, and so
forth. When assessing the architectures of individual subsystems at the same tier in the
overall system aggregation hierarchy, it becomes easy to miss the “whole forest for the
individual trees.”

Specifically, it is important that higher level architects ensure the architectural integrity
across multiple subsystems architected by different subsystem architecture teams work-
ing in parallel. For example, the different subsystem architects may have taken different
architectural approaches to handling the scheduling of processes (e.g., the performance
quality factor) or fault tolerance (e.g., the robustness quality factor). These approaches
may work well at the individual subsystem level, but may cause significant problems
that only show up when the subsystems are integrated (e.g., during integration or system
testing).

The assessment teams must take care to properly assess whether architectural integrity is
maintained across the entire system architecture. If not, then the assessment team must
determine if there are good reasons why the architectural approaches vary and that these
variances do not cause unexpected or unacceptable architectural risks.

It is possible that future versions of the QUASAR method will provide additional sup-
port for assessing architectural integrity across multiple subsystems within the overall
system architecture.

2. Weigh engineering tradeoffs between quality factors.

The current version of the QUASAR method emphasizes the assessment of the system
architecture’s support for cohesive sets of quality goals and requirements on an individ-
ual quality factor by quality factor basis. This is because quality cases consist of claims,
arguments, and evidence associated with an individual quality factor or quality subfac-
tor.

Yet, a system architect must make engineering tradeoffs between the different quality
factors. For example, increasing security typically makes it harder to achieve perform-

CMU/SEI-2006-HB-001 157

ance and usability requirements. Thus, requirements engineers must specify a feasible
combination of quality requirements and architects use their limited resources to develop
a globally optimal (read sufficient) architecture that adequately supports the meeting of
all quality requirements rather than develop an over-architected architecture that is lo-
cally optimal for some quality factors and inadequate for others. The current version of
QUASAR addresses this problem during the subsystem architecture assessment prepara-
tion and meeting in two ways:
a. as part of the architects’ introduction of their architecture to the assessment team
b. as a rationale associated with one or more individual architectural decisions in qual-

ity case arguments

It is possible that future versions of the QUASAR method will provide additional sup-
port or more emphasis for assessing the architects’ engineering tradeoffs between quality
factors.

3. Increase emphasis on active probing of the architecture.

The current version of QUASAR emphasizes the architects’ responsibility to make their
cases that their architectures have sufficient quality. After all, they should best know
what quality requirements their architecture must support (claims), what architectural
decisions they made and why (arguments), and where they documented these decisions
(evidence). However, architects naturally tend to emphasize the best aspects of their ar-
chitecture. Architects do not tend to bring out the weaknesses in their architectures and
naturally do not address potential architectural decisions and risks that did not occur to
them. The current version of the QUASAR method recognizes this problem by assigning
the assessment team the responsibility to ask the architects probing questions about their
architectures. Currently, the assessment team can request the architects to run through
one or more scenarios as a test of their architecture’s support for a quality requirement.

It is possible that future versions of the QUASAR method will provide additional em-
phasis on the assessment team’s responsibility to actively probe the architecture.

4. Develop a catalog of architectural styles, patterns, and mechanisms to use as stan-
dardized arguments.

In practice, there are relatively standard ways to solve commonly occurring architectural
problems. Given a set of quality requirements, architects learn to consider associated ar-
chitectural styles, patterns, and mechanisms to support their achievement. For example,
hardware redundancy is a common way of improving availability and reliability. There-
fore, it would be useful to develop a catalog of standard architectural arguments (i.e., ar-
chitectural decisions and associated rationales) and associated evidence. This would help
architects both develop higher quality architectures and build better quality cases. It
would also help members of assessment teams understand what to expect from the archi-
tects’ quality cases and ask probing questions when standardized solutions are not used.

158 CMU/SEI-2006-HB-001

5. Develop processes for achieving and determining sufficient architectural quality.

One of the most difficult problems for architects and assessors alike is to know when an
architecture possesses sufficient quality. Because the quality of the architecture by itself
does not determine the quality of the system, a quality architecture is a necessary but not
sufficient condition for ensuring the quality of the system. A low-quality design or im-
plementation can easily undo an architect’s good work when it comes to ensuring the
quality of a system.

The problem of knowing when an architecture is “good enough” is exacerbated by two
contributing problems:
− In current practice, quality requirements are often poorly specified as vague goals. If

the quality requirement does not have an associated minimum acceptable threshold
on some scale of measure, then it is ambiguous and it does not specify (for the archi-
tect, assessor, and tester) how good is good enough.

− The architect cannot address individual quality requirements and quality factors in
isolation. Systems must meet multiple types of quality requirements (e.g., perform-
ance and reliability, security and usability) that are naturally incompatible in the
sense that making architectural decisions that increase one quality factor naturally
decrease the other. For example, improving the availability, reliability, and robustness
of a system typically decreases that system’s performance. Thus, architects should
not locally optimize a system’s quality, one quality factor at a time; rather, architects
must make engineering tradeoffs that achieve a globally optimized (actually accept-
able) architecture.

Thus, it is difficult for both architects and assessors to know when a system’s architec-
ture sufficiently supports the system’s ability to meet all of its quality requirements of all
types (i.e., of all relevant quality factors). Currently, the QUASAR method relies on the
combined experience of the members of the assessment team to come to a consensus on
the sufficiency of the architecture. More work needs to be done to enable the QUASAR
method to better support determining the sufficiency of the quality of the sys-
tem/subsystem architectures.

6. Augment with books and training.

An earlier version of the QUASAR method was documented in a short, project-specific
procedure document. This much larger handbook provides significant details and exam-
ples that could not be provided in the original procedure document. Yet this handbook is
like a reference book and is not meant to be read from beginning to end as a normal sys-
tems engineering technical report or textbook. Therefore, this handbook should probably
be augmented with a typical systems engineering technical book, which can be used as a
textbook when teaching the quality assessment of system architectures. To improve
stakeholder understanding of the QUASAR method, this handbook should also be sup-
plemented with actual training courses covering both theory (e.g., quality cases and
components of the QUASAR method) and practice (e.g., exercises in producing and pre-
senting quality cases).

CMU/SEI-2006-HB-001 159

7. Consider tailoring down for smaller, simpler systems?

The QUASAR method was originally developed for and used on an extremely large and
complex, software-intensive systems of systems. Thus, the vast majority of systems are
significantly smaller and less complex. The question naturally arises as to if and how the
QUASAR method should be tailored for use on such systems.

The QUASAR method is modular in the sense that it assesses the quality of the architec-
ture of systems in terms of the quality of the architectures of the system’s subsystems,
the quality of the architectures of the subsystems in terms of the quality of the architec-
tures of their sub-subsystems, and so on. Therefore, in theory, QUASAR should be
equally applicable for use on relatively small and simple systems; one merely decreases
the scope of the assessment by performing the subsystem assessments on fewer subsys-
tems and against support for fewer quality attributes. In fact, even though an early ver-
sion of the QUASAR method was applied to a very large and complex system of sys-
tems, the architectures assessed were of subsystems that were of moderate size and
complexity.

A similar argument can be based on the large size and complexity of this handbook.
However, this argument is probably misleading. One can provide a procedure document
giving a brief overview of the QUASAR method in as little as 10 to 20 pages. The rea-
son why this handbook is so large is because it provides an in-depth description of all
aspects of the method as well as an extensive number of example quality cases.

Therefore, downsizing the QUASAR method is probably not a significant issue but is
included here for the sake of completeness. More experience with using the method will
determine whether or not this is a significant issue.

8. Expand beyond system architectures.

The current version of the QUASAR method is for assessing the quality of system archi-
tectures. But in order to do this, subsystem requirements reviews have been added to en-
sure that adequate derived quality requirements have been engineered (e.g., identified,
analyzed, specified, and managed) and allocated to the subsystems, the architecture of
which is being assessed. Thus, although the QUASAR method does not include the en-
gineering of quality requirements, it does include a review to ensure that they are engi-
neered in time to drive the architecture.

However, the quality of a system’s architecture does not guarantee the quality of the as-
sociated system. For example, a system may have proper reliability requirements and
have a good architecture that incorporates architectural patterns and mechanisms that
support the reliability of the system. But if the system’s design, implementation, and
testing include a sufficient number of specific kinds of defects, then the system will not
meet its reliability requirements. A quality architecture is necessary but not sufficient to
produce a quality system.

Therefore, what is eventually needed is a system engineering approach to engineer qual-
ity into the system and an assessment approach to assess the quality of the system’s re-

160 CMU/SEI-2006-HB-001

quirements, architecture, design, implementation (and production), and installation (in-
cluding for instance, its configuration). In addition to its architecture, quality cases can
be used to document the quality of a system’s requirements, design, implementation, and
installation. Therefore, the QUASAR method could be expanded beyond system archi-
tecture quality assessments to the quality assessment of the system itself and all of its in-
termediate work products.

CMU/SEI-2006-HB-001 161

162 CMU/SEI-2006-HB-001

9 Conclusion

You should take away the following observations and ideas from the information in this
handbook:

• The quality of a system’s architecture is a critical driver of the quality of the system and
is thereby critical to the success of the system.

• It is imperative to assess the quality of a system’s architecture. Specifically, it is impor-
tant to incrementally assess the quality of the system’s architecture as the architecture is
incrementally developed. In this way, architectural defects can be fixed and architectural
risks can be managed before so much design and implementation takes place that cor-
recting the architecture becomes impractical.

• System architects know (or should know) the following about their architectures:
− the architecturally significant quality goals and requirements that were derived and

allocated to their system or subsystems and that therefore drove their architectural
decisions

− whether their architectures adequately support the system achieving its architectur-
ally significant quality goals and requirements

− the architectural decisions they have made and why they made them
− how and where they documented these architectural decisions

• Quality cases are a good way for the system architects to organize and present informa-
tion and thereby are a good way to make their case to the assessors that their architec-
tures have sufficient quality.
− Architectural quality cases consist of a cohesive set of

− claims that the architecture sufficiently supports the system or subsystem’s derived
and allocated quality goals and requirements

− clear and compelling arguments (consisting of architecture decisions and associ-
ated rationales) justifying belief in the architects’ claims

− sufficient evidence (consisting of official diagrams, models, and documents or as-
sessor-witnessed demonstrations) supporting the architect’s arguments

• This handbook provides numerous examples to give architects guidance as to what their
architectural quality cases should look like.

• QUASAR is a system architecture quality assessment method that is used to assess the
quality of a system’s architecture based on quality cases developed and presented by the
system architects to the assessment team.

CMU/SEI-2006-HB-001 163

• The QUASAR method includes
− teams and member roles with associated responsibilities
− four phases consisting of associated tasks and component steps
− work products that are produced and used by members of these teams during the

QUASAR phases and tasks
• The QUASAR method was largely (but not totally) based on experience gained and les-

sons learned during its use in the assessment of the architecture of an actual large and
complex software-intensive system.

164 CMU/SEI-2006-HB-001

Appendix A Acronyms and Abbreviations

AC Alternating Current

APM Automated People Mover

ASCII American Standard Code for Information Interchange

ASP Acquisition Support Program

ATS Automated Taxi Subsystem

CDR Critical Design Review

C Component

CI Configuration Item

COMSEC Communications Security

COMPUSEC Computer Security

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

DNS Domain Name Service

DoD Department of Defense

DoS Denial of Service

DS Door Subsystem

EMSEC Emissions Security

FDDI Fiber Distributed Data Interface

FDCS Fire Detection and Control Subsystem

FDSS Fire Detection and Suppression Sub-Subsystem

FTP File Transfer Protocol

CMU/SEI-2006-HB-001 165

GSN Goal Structuring Notation

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW Hardware

ICMP Internet Control Message Protocol

INFOSEC Information Security

I/O Input/Output

IP Internet Protocol

IPT Integrated Product Team

ISDN Integrated Services Digital Network

JPO Joint Program Office

JSF Joint Strike Fighter

MHz Megahertz

MPEG Moving Picture Experts Group

MTBF Mean Time Between Failures

MTBMCF Mean Time Between Mission-Critical Failures

NETSEC Network Security

NFS Network File System

OPSEC Operations Security

OS Operating System

OTS Off-the-Shelf

PBS Power Braking Sub-Subsystem

PDR Preliminary Design Review

PERSEC Personal Security

PHYSEC Physical Security

166 CMU/SEI-2006-HB-001

PMO Program Management Office

PPP Point-to-Point Protocol

QUASAR Quality Assessment of Software Architectures

RFA Request for Action

RFI Request for Information

RFP Request for Proposal

RMS Rate-Monotonic Scheduling

SEI Software Engineering Institute

SME Subject Matter Expert

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SS Sensor Sub-Subsystem

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UDDI Universal Description, Discovery, and Integration

UDP User Datagram Protocol

UML Unified Modeling Language

VDC Volts of Direct Current

VHF Very High Frequency

WSDL Web Services Description Language

XML Extensible Markup Language

CMU/SEI-2006-HB-001 167

168 CMU/SEI-2006-HB-001

Appendix B Glossary

Allocated Requirement
a requirement that is [partially] assigned to a subsystem

Architect
the role that filled by a person who develops the architecture of a system or one of its
subsystems

Architectural Decision
a significant decision made by one or more architects that determines a part of the archi-
tecture, such as the selection of an architectural style, pattern, or mechanism

Architecturally Significant Requirement
a system or subsystem functional, data, interface, or quality51 requirement that signifi-
cantly influences the architecture of the associated system or subsystem

 Not every requirement has a meaningful impact on the architecture, because the archi-
tecture would be essentially the same regardless of the existence of the requirement. On
the other hand, other requirements drive the architects to make significant architectural
decisions. In fact, such architecturally significant requirements are the primary reasons
why architects choose to use a specific architectural style, pattern, or mechanism. In
other words, architecturally significant requirements are those requirements that cause
the architects to incorporate important, pervasive, top-level, and global decisions and in-
ventions into their architectures. Because such architecturally significant requirements
drive the architecture, they become the requirements against which the architecture is
assessed. Quality cases demonstrate that the system/subsystem architecture sufficiently
supports the ability of the system/subsystem to meet its architecturally significant re-
quirements, and QUASAR assessments use quality cases to determine whether the sys-
tem/subsystem architecture sufficiently supports the ability of the system/subsystem to
meet its architecturally significant requirements.

Architecture
the most important, pervasive, top-level, and therefore global (i.e., strategic) engineering
decisions, inventions, styles, patterns, and mechanisms and their associated rationales
Architecture primarily includes the overall system structure in terms of its essential ele-
ments, their relationships, and their associated characteristics and behavior that enable
them to collaborate together to achieve their derived and allocated requirements. Archi-
tecture also deals with all decisions that have a global impact such as the

51 Quality requirements tend to have the biggest influence on the architecture, so many if not most of

the architecturally significant requirements are quality requirements.

CMU/SEI-2006-HB-001 169

− technology, languages, and off-the-shelf products to be used
− standard approaches to concurrency (e.g., scheduling approach and ways of avoiding

concurrency defects such as race conditions, starvation, and deadlock) to be used
− standard approaches to achieve robustness and deal with exception raising, propaga-

tion, and handling
The architecture is the most important work product produced during the performance of
architecture tasks and provides a blueprint for design, implementation, and testing.

This definition is quite general, while still clearly differentiating architecture from de-
sign. Architecture is global, whereas design is local. Architecture deals with strategic is-
sues, whereas design deals with tactical issues. Architecture involves ensuring the integ-
rity of the big-picture vision, whereas design deals with the lower level details. Finally,
architecture involves choices that affect many developers, whereas design decisions im-
pact few beyond the individual designer and implementer of that design.

Architecture Argument
a logically coherent series of clear and compelling valid reasons justifying the assessors’
beliefs in one or more architecture claims. An architecture argument is typically on of
the architects’ architectural decisions (e.g., the use of appropriate architectural compo-
nents, mechanisms, or patterns).

 For example, the use of redundancy can be used as an argument that a system fulfills its
availability and reliability requirements, the use of open interface standards for key in-
terfaces can be used as an argument of interoperability, and the use of a firewall can be
used as an argument that a system fulfills its security requirements.

Architecture Assessment
a determination of the quality of the architecture of a system or subsystem

Architecture Claim
an assertion made by an architect as part of an architecture quality case that the architec-
ture of a system/subsystem supports the achievement of one or more of its architectur-
ally significant goals or the meeting of one or more architecturally significant require-
ments

Architecture Evidence
official, factual information that is part of a architecture quality case that clearly proves
the truth of the architects’ arguments supporting their architectural claims

Architecture Quality Case
a quality case that makes the case for the quality of an architecture and therefore consists
of architectural claims, architectural arguments, and architectural evidence

Architecture Team
a team responsible for producing an architecture and making a case to the assessment
team that their architecture adequately supports each type of architecturally significant
requirements

170 CMU/SEI-2006-HB-001

Argument
a logically coherent series of clear, compelling, and valid reasons for believing one or
more claims that a system or subsystem fulfills one or more of its architecturally signifi-
cant requirements, which is given as part of a quality case

 For example, the use of redundancy can be used as an argument that a system fulfills its
availability and reliability requirements, the use of open interface standards for key in-
terfaces can be used as an argument of interoperability, and the use of a firewall can be
used as an argument that a system fulfills its security requirements.

Assessment
an assessment during which certain system characteristics or qualities are determined

Assessment Kickoff Meeting
the initial meeting during which the architecture team and assessment team come to a
consensus on the scope and general scheduling of the following assessment meetings

Assessment Meeting
a meeting during which the architecture team presents their case to the assessment team
that their architecture adequately supports each type of architecturally significant re-
quirements and answers questions posed to them by members of the assessment team

Assessment Team
the team that is responsible for assessing the quality of the architecture based on the ar-
chitecture team’s claims, arguments, and evidence

Claim
an assertion made as part of a quality case that a system/subsystem achieves one or more
goals or meets one or more requirements

 Note that a claim must be supported by clear and compelling arguments that in turn are
based on sufficient official evidence in order to be judged substantiated by the assess-
ment team.

Derived Requirement
a requirement not explicitly specified by the customer but rather engineered and explic-
itly specified by the requirement team in order to fulfill one or more of the customer re-
quirements

Evidence
official, factual information that is part of a quality case that clearly proves the truth of
the architects’ arguments supporting their claims that a system or subsystem fulfills one
or more of its architecturally significant requirements

 Although it typically consists of current project architectural diagrams, models, and tex-
tual documentation that are under configuration control, evidence may also include
hardware exhibited to and directly observed by the assessment team (e.g., the configura-
tion of the subsystems of a system prototype seen during a tour of a development lab).

 For example, a current official architecture diagram that clearly shows the incorporation
of multiple servers and paired networks is valid evidence supporting the architect’s ar-
gument that the architecture incorporates the use of redundant hardware which in turn

CMU/SEI-2006-HB-001 171

backs up the architect’s claim that the architecture provides adequate availability and re-
liability.

 Note that architecture plans and development procedures should not be considered to be
evidence because they do not prove actual architecture support for architecturally sig-
nificant requirements, only intent.

Goal
1. a perceived need of a legitimate stakeholder in the system that drives the identifica-

tion, analysis, and specification of the requirements
In other words, goals are the ambiguous, infeasible, unverifiable, informally docu-
mented, architecturally significant desires that are all too often specified instead of
the specific requirements that should have actually been engineered. For example,
“The system shall be modifiable, reliable, safe, and secure.”

2. a top-level purpose that is decomposed into one or more detailed objectives
For example, the goals listed in the first section of this handbook that drive the objec-
tives of the QUASAR method.

Method
a cohesive collection of endeavor-specific method components (e.g., work products,
work units such as tasks, and the teams and roles that perform them) that model a sys-
tematic intended way of producing work products and providing services
For example, QUASAR is a method for performing system architecture assessments.

Model
an abstraction (simplification) of something that captures its essential characteristics for
some specific purpose while ignoring unimportant or diversionary details

Quality
the degree to which a work product (e.g., system, subsystem, architecture, or document)
has useful and desirable characteristics as represented by its associated quality factors

Quality Case
for a given quality factor,52 the combination of a
− cohesive collection of one or more claims that the system or subsystem architecture53

adequately fulfills its associated quality-related requirements
− corresponding structured set of clear and compelling valid arguments supporting

these claims
− sufficient amount of properly documented evidence supporting these arguments to

convince a skeptical assessor of the validity of the claims and arguments

52 A quality case is a generalization of a safety case to other quality factors. There are various kinds

of quality cases (e.g., interoperability cases, maintainability cases, reliability cases, and safety
cases).

53 Because this handbook deals with system architecture assessments, we only address system or
subsystem architecture-level quality cases. In general, quality cases could include design and im-
plementation arguments and evidence.

172 CMU/SEI-2006-HB-001

Quality Case Diagram
a UML class diagram that summarizes the claims, arguments, and evidence comprising a
quality case and the relationships between them

Quality Criterion
a specific description of something that provides evidence either for or against the exis-
tence of a specific quality factor or subfactor

Quality Factor (quality attribute, quality characteristic, or “-ility”)
an important attribute, characteristic, or property of a work product (e.g., system, sub-
system, architecture) or process that characterizes a part of its overall quality

Quality Measure
a unit of measure that provides a range of numerical values enabling the measurement of
the quality of a work product or process by documenting the degree to which the work
product or process possesses (or shall possess) a specific quality factor or quality subfac-
tor

Quality Requirement
a requirement specifying that a system or subsystem must have a minimum required
amount of a quality factor or one or more quality factors
A quality requirement specifies that under certain conditions, the system or subsystem
must exhibit a quality criterion demonstrating that one or more associated quality sub-
factors exist beyond a minimum threshold on an associated quality measure.
The following is an example of a quality (performance) requirement: “When not in de-
graded mode (condition), the mortgage processing system shall correctly process mort-
gage applications (quality criterion) with a throughput (performance quality subfactor)
of at least 100 applications per second (threshold on quality measure).”

Quality-Related Requirement
a requirement that has ramifications for the achievement of the associated quality
Four types of quality-related requirements include quality requirements (safety require-
ments), quality-significant requirements (e.g., functional, data, or interface requirements
that make the system safety critical because they can lead to hazards and accidents if not
implemented correctly), quality subsystem requirements (e.g., requirements for safety
subsystems such as fire detection and suppression systems), and quality constraints (e.g.,
architecture, design, and implementation decisions that are to be treated as if they were
requirements).

Quality Subfactor
an important part of a quality factor
For example, jitter, latency, response time, schedulability, and throughput are quality
subfactors of the quality factor performance, whereas accidental harm, accident, hazard,
and safety risk are quality subfactors of safety.

QUASAR (Quality Assessment of System ARchitectures)
a method for assessing the quality of a system’s architecture in terms of the architec-
ture’s support for its associated architecturally significant requirements based on the ar-
chitects’ claims, supporting arguments, and underlying evidence

CMU/SEI-2006-HB-001 173

Requirement
an established need justifying the timely allocation of resources to develop a capability
to achieve approved goals or accomplish approved missions or tasks
Unlike goals, requirements should be cohesive, complete, consistent, correct, current,
externally observable, feasible, mandatory, relevant, stakeholder-oriented, unambiguous,
validatable, and verifiable.

Requirements Meeting
a subsystem-level meeting during which the architecture team demonstrates that the ar-
chitecturally significant requirements have been adequately engineered and identified to
enable them to engineer the architecture

Requirements Team
the team that engineers the requirements (including architecturally significant require-
ments) for a system or one or more of its subsystems

Safety Case
a cohesive collection of claims that a system is sufficiently safe for a given usage in a
given environment (i.e., that it fulfills its safety-related requirements), whereby the
claims are based on a corresponding structured set of clear and compelling valid argu-
ments that are supported by a sufficient amount of properly documented evidence

Software-Intensive System
a system, major functionality and characteristics of which are implemented via software
as opposed to via hardware or manual procedures

Subsystem
an integrated subset of a system that provides a capability that is essential to the success
of the system

System
a major, functionally cohesive, executable, and integrated aggregation of components
(including hardware, software, and potentially data, manual procedures, and facilities)
that collaborate to provide the capability to perform one or related missions

System Architecture
an architecture of a system capturing its most important, pervasive, top-level, strategic
inventions, decisions, and their associated rationales about the overall structure (i.e.,
subsystems, sub-subsystems, and their relationships) and associated characteristics and
behavior including how they collaborate together to achieve their allocated requirements

174 CMU/SEI-2006-HB-001

Appendix C Quality

The QUASAR method is fundamentally founded on the concept of quality. It assess the qual-
ity of system architectures in terms of quality cases, and the first part of quality cases are
claims that the architecture sufficiently supports the system’s achievement of quality goals
and meeting of quality requirements. Clearly, the QUASAR method cannot be effectively
used unless there is a firm and unambiguous understanding of the meaning of quality.

C.1 Quality Model
The term quality is quite complex and often means different things to different people. To
avoid this ambiguity, systems engineers must use a quality model that makes the term “qual-
ity” specific and useful for engineering systems [Firesmith 03]. A quality model does this by
decomposing the term into its component concepts and their relationships to one another.

As illustrated in Figure 20, a quality model is a hierarchical model (i.e., a collection of related
abstractions or simplifications) for formalizing the concept of the quality of a system in terms
of its following components:

• Quality Factor (aka, quality attribute, quality characteristic, “-ility”)

A quality factor is a high-level characteristic, attribute, or property of a system or sub-
system that characterizes an aspect of its quality. Quality has to do with the degree to
which the system or subsystem possesses a combination of characteristics, attributes, as-
pects, or traits that are desirable to its stakeholders. As listed in Section C.2, there are
many different quality factors such as availability, extensibility, performance, reliability,
reusability, safety, security, and usability. These factors determine whether or not as sys-
tem has sufficiently high quality. Because many of the quality factors end in the letters
“-ility,” they are often collectively referred to as the “-ilities.” Quality factors can be
classified into more specific subclasses of quality factors (e.g., safety is a kind of defen-
sibility, which is a kind of dependability, which is a kind of quality).

• Quality Subfactor

A quality subfactor is a major component (aggregation) of a quality factor or of another
quality subfactor. Thus, throughput and response time are quality subfactors of perform-
ance, whereas internationalization and personalization are quality subfactors of con-
figurability.

CMU/SEI-2006-HB-001 175

• Quality Measure

Quality measures are measurement scales that provide a way to measure and quantify a
quality criterion. Quality measures thus make quality criteria objective and unambigu-
ous. Quality measures support the production of metrics by providing numerical values
for specifying or estimating the quality of a system or subsystem by measuring the de-
gree to which it possesses a specific quality factor or subfactor.

Quality Model

Quality
Factor

Quality
Subfactor

Quality
Measure

System

defines the meaning of the
quality of a

is measured
using a

defines the
meaning of

a specific type
of quality of a

Subsystem

Figure 20: Quality Model

C.2 Example Quality Factors and Subfactors
Quality factors and subfactors are used to produce quality requirements, which are a major
type of architecturally significant requirement. QUASAR assessments are thus typically or-
ganized around assessing architectural support for these quality factors and subfactors.

Unfortunately, a great deal of time can be wasted in fruitless arguments between and among
members of the architecture, assessment, and requirements teams regarding the meaning of
the quality factors used to produce quality requirements, drive the system and subsystem ar-
chitectures, and on which the system quality assessments are based. There are several stan-
dard quality models [ISO 91] and associated taxonomies and ontologies [Firesmith 03]. As
illustrated in Figure 21, the following examples taken primarily from the OPEN Process
Framework Repository provide a fairly complete and consistent hierarchy of quality factors
[OPFRO 06].

176 CMU/SEI-2006-HB-001

Robustness

Safety

Security

Survivability

Defensibility

Availability

Correctness

Predictability

Reliability

Soundness

Stability

Dependability

Efficiency

Interoperability

Configurability

Capacity

Performance

Usage-Oriented
Quality Factor

Development-Oriented
Quality Factor

Quality Factor

Sustainability

UsabilityAffordability

Figure 21: Hierarchy of Usage-Oriented Quality Factors

• Affordability – the degree to which a system or subsystem can be developed and manu-
factured within budget
Quality subfactors of affordability include
− Development Cost – the cost to develop the system or subsystem
− Manufacturing Cost – the cost to manufacture instances of the system
− Support Cost (aka, sustainment cost) – the cost to support the system one manufac-

tured and delivered.
− Retirement Cost (aka, disposal cost) – the cost to retire the system once it is no longer

needed.
• Availability (aka, readiness) – the degree to which a system or subsystem is ready to

function without failure in one or more specified ways at any time during a specified pe-
riod of time under normal conditions or circumstances (i.e., the proportion of time that
the system or subsystem can be used)

• Capacity – the degree to which a system or subsystem can successfully handle a large
number of things at a single point in time or during a specific interval of time

• Compliance – the degree to which a system or subsystem adheres to related standards,
conventions, regulations in laws, and similar prescriptions

CMU/SEI-2006-HB-001 177

• Configurability – the degree to which a system or subsystem is or can be configured
into multiple forms (i.e., configurations)

Quality subfactors of configurability include
− Internationalization (aka, globalization and localization) – the degree to which the

system can be (or is) configured to function appropriately in a global environment in
terms of
− native languages, language idioms, spelling, and character sets
− formats of contact information such as name, address, and phone number
− currencies including real-time currency conversion
− legal issues such as import/export laws, tariff and sales tax calculations, customs

documentation, trademarks, and privacy laws
− culture (e.g., use of inappropriate colors, symbols, or product names)

− Personalization – the degree to which the system can be (or is) configured so that in-
dividual users can be presented with a unique user-specific experience

− Subsetability – the degree to which the system can be released in multiple variants,
each of which implements a different subset of requirements (i.e., each variant is a
subset of a primary complete variant)

− Variability – the extent to which the system exists in multiple variants, each of which
implements a different superset of the common set of requirements (i.e., some re-
quirements are unique to each variant)

• Consistency – the degree to which the components of a system or subsystem:54
− belong to the same architectural styles
− implement the same architectural patterns
− use the same architectural mechanisms

• Correctness – the degree to which a system or subsystem and its outputs are free from
defects

Quality subfactors of correctness include
− Accuracy – the magnitude of defects (i.e., the deviation of the actual or average

measurements from their true value) in the system’s stored and output quantitative
data

− Latent Defects – the degree to which the system is free from defects upon delivery
− Precision – the degree of dispersion of the system’s stored and output quantitative

data around their average values
− Timeliness – the degree to which data remains current (i.e., up-to-date)

• Defensibility – the degree to which a system or subsystem defends valuable assets from
accidental or malicious harm (Defensibility can be classified into the quality factors: ro-
bustness, safety, security, and survivability.)

54 For example, the components have the same structure and communicate the same way via similar

interfaces.

178 CMU/SEI-2006-HB-001

• Efficiency – the degree to which a system or subsystem effectively uses (i.e., minimizes
its consumption of) its resources (e.g., bandwidth, CPU [central processing unit] cycles,
storage, electricity)

• Interoperability – the degree to which a system operates (i.e., collaborates and inter-
faces) effectively with specified [types of] external systems by successfully providing
services and data to those systems and using services and data provided by those sys-
tems

• Intraoperability – the degree to which subsystems within a system operate effectively
with other subsystems within the system by successfully providing services and data to
those subsystems and using services and data provided by those subsystems

• Maintainability – the degree of ease55 with which a system or subsystem can be modi-
fied between major releases when not required by changes to requirements. Maintain-
ability can be classified into the quality factors: adaptive, corrective, perfective, and pre-
ventative maintainability.

Quality subfactors of maintainability include
− Analyzability – the degree of ease with which defects, deficiencies, and causes of

failures can be diagnosed and localized to the components to be modified
− Modifiability (aka, changeability) – the degree of ease with which a system or sub-

system can have specified types of changes made
− Extensibility – the degree of ease with which a system or subsystem can be enhanced

to meet specified future goals and significantly changing requirements
− Scalability – the degree of ease with which a system or subsystem can be modified to

increase its existing capacities
− Verifiability – the degree of ease with which changes to a system or subsystem can be

verified as having been correctly made and to be without unexpected and undesirable
side-effects

• Operational Environment Compatibility – the degree to which a system or subsystem
can be used and functions correctly under specified conditions of the physical environ-
ment in which it is intended to operate

• Performance – the degree to which a system or subsystem operates within its desig-
nated temporal constraints

Quality subfactors of performance include
− Jitter – the degree to which the variability of the time intervals between system con-

trolled periodic actions remains within its designated constraints

55 The phrase “the degree of ease” refers to the amount of effort required to do something, whereas

the phrase “the degree to which” refers to the extent to which something occurs. The difference
between these two phrases determines the type of scale of measure used to set the threshold on the
associated quality requirements.

CMU/SEI-2006-HB-001 179

− Latency – the degree to which the time that the system or subsystem takes to execute
specific tasks (e.g., system operations and use case paths) from end to end is within
acceptable time limits

− Response Time – the degree to which the time it takes for the system or subsystem to
initially respond to a client request for a service is within acceptable time limits

− Schedulability – the degree to which events and behaviors are deterministic and can
be accurately scheduled

− Throughput – the degree to which the system is able to complete an operation and
provide a service within acceptable time limits

• Portability – the degree of ease with which a software system or subsystem can be
moved to specified [types of] hardware (e.g., server) or software (e.g., operating system
or middleware) environments

• Predictability – the degree to which the behavior of a system or subsystem is determi-
nistic (i.e., predictable) for a given set of inputs when in a given state and/or environ-
ment

• Producibility – the degree of ease with which a system or subsystem can be produced
(e.g., manufactured) to meet its requirements

• Reliability (aka, continuity) – the degree to which a system or subsystem continues to
function without failure in one or more specified ways during a specified period of time
under normal conditions or circumstances

• Reusability
− Architect with reuse – the degree to which the current system or subsystem architec-

ture enables externally produced components to be incorporated with little or no
modification

− Architect for reuse – the degree to which components currently being produced are
enabled to be incorporated with little or no modification into the architecture of other
specified systems

• Robustness – the degree to which a system or subsystem tolerates potentially harm-
causing events or conditions and recovers from them

Quality subfactors of robustness include
− Tolerance – the degree to which a system or subsystem tolerates potentially harm-

causing events or conditions
− Environmental Tolerance – the degree to which essential mission-critical services

continue to be provided in spite of potentially harm-causing environmental condi-
tions (e.g., salt spray causing corrosion or radiation randomly changing the value
of a bit within memory)

− Error Tolerance – the degree to which essential mission-critical services continue
to be provided in spite of the presence of erroneous input (e.g., incorrect, stale, or
out-of-order data). Note that erroneous input is typically due to human error, al-
though it may also be due to sensor failure, timing delays, etc.

180 CMU/SEI-2006-HB-001

− Fault Tolerance – the degree to which essential mission-critical services continue
to be provided in spite of the presence or execution of defects, whereby a defect
(aka, fault and bug) is an underlying flaw in a work product (i.e., a work product
that is inconsistent with its requirements, policies, goals, or the reasonable expec-
tations of its customers or users). Note that a defect may or may not cause a failure
depending on whether or not the defect is executed and whether or not exception
handling prevents the failure from occurring.

− Failure Tolerance – the degree to which the system continues to provide essential
mission-critical services in spite of the occurrence of failures, whereby a failure is
the execution of a defect that causes an inconsistency between an executable work
product’s actual (i.e., observed) and expected (e.g., specified) behavior.

− Fail Safety – the degree to which the system places itself into a safe operating
mode in the event of specific failures

− Fail Security – the degree to which the system places itself into a secure operating
mode in the event of specific failures

− Fail Softness – the degree to which the system continues to provide partial opera-
tional capabilities (possibly in a degraded mode) in the event of specific failures

− Incident Tolerance – the degree to what a system or subsystem continues to provide
essential mission-critical services in spite of the occurrence of incidents
− Safety Incident Tolerance – the degree to which a system or subsystem continues

to provide essential mission-critical services in spite of the occurrence of safety in-
cidents (e.g., accidents and near misses)

− Security Incident Tolerance – the degree to which a system or subsystem continues
to provide essential mission-critical services in spite of the occurrence of security
incidents (e.g., security attacks and probes)

− Survivability Incident Tolerance – the degree to which a system or subsystem con-
tinues to provide essential mission-critical services in spite of the occurrence of
survivability incidents (e.g., military attacks)

− Recoverability – the degree to which a system or subsystem recovers from a failure
− Functionality Recoverability – the degree to which a system or subsystem reestab-

lishes its prior level of functionality after a failure
− Data Recoverability – the degree to which a system or subsystem recovers data di-

rectly affected by a failure
− Recovery Effort – the amount of effort and time needed to reestablish a system or

subsystem’s functionality and to recover any data that has been directly affected by
a failure

• Soundness – the degree to which a system or subsystem is sound. Soundness can be
classified into the quality factors: availability, correctness, predictability, and reliability.

• Safety – the degree to which
− a system or subsystem prevents or reduces in probability or severity, detects, reacts

to, and adapts to
− accidental (i.e., unplanned and unintended but not necessarily unexpected) harm to

valuable assets
− safety incidents (i.e., accidents and near misses)
− hazards (i.e., unsafe conditions)

− safety risks associated with the system or subsystem are acceptably low

CMU/SEI-2006-HB-001 181

• Security – the degree to which
− a system or subsystem prevents or reduces in probability or severity, detects, reacts

to, and adapts to
− malicious (i.e., unplanned and unintended but not necessarily unexpected) harm to

valuable assets caused by attackers
− security incidents (i.e., attacks and probes)
− threats (i.e., existence of attackers with means, motives, and opportunities)

− security risks associated with the system or subsystem are acceptably low
• Stability – the degree to which a system or subsystem continues to deliver mission-

critical services during a given time period56 under a given operational profile regard-
less of any failures whereby the
− failures may prevent the system from delivering less critical services
− failures limiting the delivery of mission-critical services occur at unpredictable times
− root causes of such failures are difficult to identify efficiently

• Sustainability – the degree of ease with which a system or subsystem can be supported
once placed into use (i.e., fielded into its operational environment)

• Testability – the degree of ease with which a system or subsystem facilitates the crea-
tion and execution of successful tests (i.e., tests that cause failures due to underlying de-
fects57)

Quality subfactors of testability include
− Controllability – the ease with which the system can be

− placed into the proper pretest state
− stimulated with the test message or data

− Observability – the ease with which the system can be observed to
− be in the proper pretest state
− provide the proper output to its clients, peers, and servers (e.g., returned values,

output messages, output requests for data)
− in the proper posttest state

• Usability – the degree to which the system’s human user interface enables a specified
group of users achieve specified goals in a specified context of use

56 Stability is a type of reliability. Whereas reliability is typically measure in terms of mean time

between failures (MTBF), stability is typically measured in terms of mean time between mission-
critical failure (MTBMCF). Stability is closely related to robustness, which is a type of defensibil-
ity. Whereas robustness refers to how well a system defends itself in terms of its tolerance of nega-
tive events and conditions and in terms of its recoverability once failure occurs, stability refers to
how often mission-critical failures occur.

57 See http://www.opfro.org/Glossary/GlossaryF.html for definition of “failure.”

182 CMU/SEI-2006-HB-001

http://www.opfro.org/Glossary/GlossaryF.html

Quality subfactors of usability include
− Attractiveness (aka, engagability, preference, and stickiness58) – the degree to which

users find the system to
− be attractive or appealing
− engage their attention
− provide a positive user experience
− be preferable to its alternatives
− make them to continue to use it
− make them return to use it in the future

− Credibility (aka, trustworthiness) – the degree to which users are confident with and
have trust in the system including that its
− output and behavior are correct
− content is authoritative
− owner’s motives are trustworthy
− developers are competent

− Differentiation – the degree to which the system differentiates itself from competing
products

− Ease to Entry – the ease with which users can start using the system (e.g., can log on
and begin using their desired functionality without waiting an excessive amount of
time to be identified, authenticated, and navigate to the point where they can start
performing their tasks)

− Ease of Location – the ease with which users can find the system’s content or ser-
vices (e.g., finding Web applications such as Web sites using search engines)

− Ease of Remembering – either the degree to which occasional users can remember
how to use the system to perform common tasks or the degree to which regular users
to can remember how to use the system to perform infrequent tasks

− Effectiveness (aka, operability) – the degree to which the system its enables users to
successfully achieve their goals

− Error Minimization – the degree to which the system minimizes the number of errors
that its users make

− Learnability – the degree to which representative users can learn to use the system to
achieve their goals (e.g., to find desired content and to perform their tasks)

− Navigability – the degree to which the product enables users to easily move through
the user interface or documentation to achieve their goals

− Operability – the degree to which the system minimizes the amount of effort users
(and operators) must expend to achieve their goals (in relation to the accuracy and
completeness with which these goals are achieved)

− Retrievability – the ease with which the product enables users to obtain information
in a form that is useful to them (e.g., print out a paper report, make a copy of a mul-
timedia file)

58 The term “stickiness” is typically used with reference to Web pages and refers to how long users

remain at (i.e., remain stuck to) given Web pages.

CMU/SEI-2006-HB-001 183

− Suitability (aka, appropriateness) – the degree to which users find that the product to
be suitable for the performance of their tasks

− Understandability – the degree to which users find the system’s human interfaces and
output to be clear, legible, unambiguous, and comprehensible (especially during un-
usual situations)

− User-Satisfaction – the degree to which users are satisfied with the product and con-
sider it to be beneficial to them

C.3 Quality Requirements
Having quality requirements that themselves exhibit high quality is a critical prerequisite for
the production of a high-quality system architecture that sufficiently supports the systems’
meeting of these quality requirements. Building on Figure 20, which illustrates the structure
of a quality model in terms of its quality factors, quality subfactors, and quality measures,
this subsection defines quality requirements and shows how they relate to the components of
the quality model.

As illustrated in Figure 22, a quality requirement consists of a three main parts.

Quality Model

Quality
Factor

Quality
Subfactor

System

defines stakeholders
minimum acceptable
level of quality of a

defines the meaning of the
quality of a

Subsystem

Quality Requirement

Condition Quality
Criterion

Quality
Threshold

shall
exceed

is applicable
during

Quality
Measure

is measured
along ais

measured
by

Quality Goal

determines
existence

of

quantifies a

states stakeholders
importance of achieving a

Figure 22: Components of a Quality Requirement

184 CMU/SEI-2006-HB-001

• Condition

An optional condition that states under what conditions the quality requirement must be
met. For example, quality requirements specifying high performance and reliability may
only hold during normal conditions, but not under degraded mode operations.

• Quality Criterion

A quality criterion is a system-specific description that provides evidence either for or
against the existence of a given quality factor or subfactor.59 Quality criteria signifi-
cantly contribute toward making the high-level quality factors and subfactors detailed
enough to be unambiguous and verifiable. When quality criteria are adequately specific,
they lack only the addition of quality metrics to make them sufficiently complete and de-
tailed to form the basis for detailed quality requirements. If quality is the trunk of the
tree and the quality factors and subfactors are the branches and twigs, then quality crite-
ria are the leaves. There are many more quality criteria than quality factors and subfac-
tors because there are typically numerous criteria per factor and subfactor. Quality crite-
ria are also more domain-specific and less reusable than quality factors and subfactors
because they are specific descriptions of specific system and subsystems. To deal with
the large number of criteria and to make them reusable, quality criteria can often be pa-
rameterized in the quality models, and specific instances of the parameterized classes of
criteria can then be used to produce quality criteria.

• Quality Threshold

A quality threshold specifies a minimum level of quality along a quality measurement
scale. Thus, the threshold is measured in units of measure based on the quality measure
of the quality model for the quality factor or quality subfactors associated with the qual-
ity criteria of the quality requirement. For example, throughput performance require-
ments may specify a minimum acceptable quality threshold of a certain number of trans-
actions per second. Similarly, a reliability requirement may specify a minimum
acceptable quality threshold of a certain mean time between failures (MTBF).

Perhaps the most important thing to remember about quality requirements is that all
should have clearly stated quality thresholds. Without quality thresholds, it is not a qual-
ity requirement but rather a vague, ambiguous quality goal that is therefore unverifiable.
From a system architecture quality assessment standpoint, without quality requirements
with associated quality thresholds, it is impossible for
− system architects to properly make engineering tradeoffs between competing quality

requirements

59 Under certain circumstances, a quality criterion may be related to more than one quality subfactor.

For example, the quality criteria of defensibility requirements (e.g., safety, security, and surviv-
ability requirements) typically address both a defensibility problem subfactor (e.g., harm, danger,
defensibility event, or risk) and a defensibility solution subfactor (e.g., prevention, detection, and
reaction). Thus, a safety requirement may specify that a system must prevent accidental harm, de-
tect an accident, or react a specific way to the detection of an accident).

CMU/SEI-2006-HB-001 185

− system architects and system architecture assessors to know if the system architecture
− sufficiently supports its derived and allocated quality requirements
− is therefore good enough

− assessors to unambiguously determine if the system architecture should pass the as-
sessment

186 CMU/SEI-2006-HB-001

Appendix D Example Checklists

D.1 Example Subsystem Requirements Meeting
Checklist

The following questions can be used as a checklist during the preparation for and perform-
ance of a subsystem requirements meeting.

D.1.1 Preparation for the Requirements Review Meeting
The following questions concern preparation for the requirements review:

1. Method Training

Did the subsystem requirements team and the subsystem architecture team receive train-
ing in the latest version of the tailored system architecture quality assessment method?

2. Quality Factors and Quality Subfactors

Has the subsystem requirements team identified the relevant quality factors and subfac-
tors?

3. Preparatory and Presentation Materials
− Were necessary materials provided?

− Did the subsystem requirements team and subsystem architecture team provide the
necessary preparation and presentation materials to the assessment team?

− Were these materials complete in the sense of documenting the quality goals and
requirements as well as providing sample quality cases?

− Was there sufficient lead time?
Did the subsystem requirements team and subsystem architecture team provide the
preparation and presentation materials to the assessment team with sufficient lead
time so that the assessment team members could read these materials prior to the
subsystem requirements review meeting?

− Was relevant material indicated?
Was the relevant information identified (e.g., highlighted or indexed) in a manner
that it was easy for the assessment team to find?

4. Assessment Team Preparation

Did members of the assessment team read the preparatory and presentation materials
provided by the subsystem requirements team and subsystem architecture team?

CMU/SEI-2006-HB-001 187

5. Meeting Organization
− Have meeting attendees and stakeholders been identified?
− Have the date, time, and location of the meeting been set?
− Has an agenda been developed?
− Have the intended meeting members been invited to the meeting?
− Have other stakeholders been notified of the meeting?

D.1.2 Quality Goals and Requirements
The following questions concern the quality goals and requirements:

1. Quality Goals

For each relevant quality factor and subfactor, did the subsystem requirements team
identify and derive a complete set of goals for the subsystem?

2. Quality Requirements

For each relevant quality factor and subfactor, did the subsystem requirements team
identify and derive a complete set of quality requirements for the subsystem?

3. Quality of the Quality Requirements

Are the derived and allocated quality requirements correct, complete,60 consistent (with
the associated quality goals), unambiguous, and verifiable?

4. Requirements Trace

Did the requirements team develop a complete requirements trace showing the deriva-
tion of the subsystem quality goals and requirements to their sources?

5. Understanding of the Quality Goals and Requirements

Did the architecture team adequately demonstrate their understanding of the quality
goals and requirements?

60 Because QUASAR is an architecture quality assessment method rather than a requirements as-

sessment method, it is not intended that the requirements team provide a great deal of evidence to
show correctness and completeness. The important thing is to be able to convince the assessment
team that the requirements are unambiguous and verifiable so that the assessment team will be
able to assess the architecture against these requirements and feel confident that the assessment
team and the architecture team will be able to know whether or not the architecture adequately
supports these requirements.

188 CMU/SEI-2006-HB-001

D.1.3 Sample Architecture
The following questions concern the sample architecture:

1. Planned Quality Case Arguments and Evidence

Did the architecture team present a representative sample of the kind of quality case ar-
guments and evidence they intend to provide and present during the subsequent architec-
ture assessment meeting?

2. Quality of Planned Arguments
− Relevant Arguments?

Did the architecture team present representative arguments that were relevant in the
sense that the arguments were actual architectural decisions (e.g., architectural pat-
terns and mechanisms) rather than merely architectural plans and procedures (i.e., in-
tended ways for future development of the architecture)?

− Clear and Compelling?
Were the arguments clear and compelling to the assessors?

− Rationales?
Were rationales provided with each of the architectural decisions?

3. Quality of Planned Evidence
− Relevant Evidence?

Did the architecture team provide relevant evidence (e.g., architecture documents,
models, and diagrams that backed up their relevant arguments)? In other words, did
the evidence show actual architectural decisions?

− Adequate Evidence?
Did the evidence back up all of the arguments?

− Official Evidence?
Is the evidence official project documentation under configuration management as
opposed to temporary PowerPoint presentations developed just for the assessment?

− Evidence Indicated?
Did the architects identify the relevant information (e.g., by highlighting, indexing,
or verbally during the presentation) amongst the potentially vast amount of eviden-
tiary documentation provided?

4. Action Item List
− Action Items Identified?

Was the action item list updated based on action items identified during the subsys-
tem requirements review phase?

− Assigned with Due Dates?
Have actions been assigned with due dates?

− Tracked to Completion?
Are action items being tracked to completion?

− Action Item List Maintained?
Is the action item list being properly maintained as action items are completed?

CMU/SEI-2006-HB-001 189

D.1.4 Follow-Through Task
The following questions concern the subsystem requirements review phase follow-through
task:

1. Outbrief given?

At the end of the requirements review meeting, did the assessment team develop and
present an adequate outbrief to the members of the subsystem requirements team, mem-
bers of the subsystem architecture team, and other interested stakeholders (e.g., manag-
ers and members of the top-level architecture team)?

2. Meeting Minutes
− Developed?

Did the assessment team develop a complete set of minutes of the meeting?
− Minutes Quality?

Were the minutes reviewed for completeness and factual correctness?
− Distributed?

Were the minutes distributed to all relevant stakeholders?
− Timeliness?

Were the minutes developed, reviewed, and distributed within a reasonable time after
the meeting?

3. Lessons Learned

Were lessons learned during the requirements review phase captured? Were these les-
sons learned used to update the assessment method and associated training materials?

D.2 Example Architecture Assessment Checklist
The following questions can be used as a checklist during the preparation for and perform-
ance of a subsystem architecture assessment meeting.

D.2.1 Questions Concerning Preparation for the Meeting
The following questions concern preparation for the architecture assessment meeting:

1. Preparatory and Presentation Materials
− Necessary Materials Provided?

− Did the subsystem architecture team provide the necessary preparation and presen-
tation materials to the assessment team?

− Were these materials complete in the sense of introducing the subsystem, review-
ing the derived and allocated quality requirements, introducing the subsystem ar-
chitecture, and documenting the quality cases?

190 CMU/SEI-2006-HB-001

− Sufficient Lead Time?
Did the subsystem architecture team provide the preparation and presentation materi-
als to the assessment team with sufficient lead time so that the assessment team
members could read these materials prior to the architecture assessment meeting?

− Relevant Material Indicated?
Was the relevant information identified (e.g., evidence highlighted or indexed) in a
manner that it was easy for the assessment team to find?

2. Assessment Team Preparation

Did members of the assessment team read the preparatory and presentation materials
provided by the subsystem architecture team?

3. Requests for Information and Action
− Did members of the assessment team create any RFIs and RFAs based on their read-

ing of the preparation and presentation materials?
− Did these RFIs and RFAs get delivered to the subsystem requirements team with suf-

ficient lead time for them to prepare their responses before the subsystem assessment
meeting?

4. Meeting Organization
− Have meeting attendees and stakeholders been identified?
− Have the date, time, and location of the meeting been set?
− Has an agenda been developed?
− Have the intended meeting members been invited to the meeting?
− Have other stakeholders been notified of the meeting?

D.2.2 Initial Presentations
The following questions concern the initial presentations made by the subsystem architecture
team during the architecture assessment meeting:

1. System Introduction
− Did the subsystem architecture team provide the assessment team with an adequate

introduction to the subsystem?
− Did the presenters address the primary purpose of the subsystem, where it fits into

the overall system architecture, its context in terms of the externals and other subsys-
tems with which it interoperates, and its primary functions?

2. Requirements Review
− Did the subsystem architecture team review the architecturally significant goals and

requirements that have been derived and allocated to the subsystem?
− Did the presenters identify the relative priorities of these goals and requirement types

(and requirements where appropriate)?

3. Architecture Introduction
− Did the subsystem architecture team introduce their architecture to the members of

the assessment team?

CMU/SEI-2006-HB-001 191

− Did they cover its major architectural components and their objectives?
− Did they cover the major relationships between these architectural components?
− Did they provide an overview of their most important architectural decisions (e.g.,

choice of architectural styles, patterns, and mechanisms) and their associated ration-
ales?

− Did they describe the major engineering tradeoffs that they made between conflicting
quality factors?

4. Quality Cases
− Did the subsystem architecture team present their quality cases to the assessment

team?
− Did they cover all of the relevant important quality factors and quality subfactors

given the time constraints of the meeting?
− Claims?

o Did the subsystem architecture team make appropriate claims given the qual-
ity goals and requirements?

o Did these claims include requirements, or only goals?
o Were the requirements claims unambiguous in terms of specific, quantified

quality requirements?
− Arguments?

o Did the subsystem architecture team provide arguments as to why the as-
sessment team should believe their claims?

o Where these arguments clear and compelling?
o Were the arguments stated in terms of specific architectural decisions and as-

sociated rationales?
o Did the architects use standard architectural styles, patterns, and mecha-

nisms?61
o Were their decisions appropriate given the architecturally significant re-

quirements and other architectural constraints?
o Were the rationales credible?

− Evidence?
o Was the evidence in the form of official project documents or assessment

team witnessed demonstrations?
o Was relevant information identified (e.g., evidence highlighted or indexed)

in a manner that it was easy for the assessment team to find?
o If asked for more specific evidence, could the architects easily find and dis-

play it?

61 This checklist can be augmented with standard quality-factor specific architecture decisions, but

experience has shown that it is usually best left to separate training material, as its inclusion makes
the checklist too long and unwieldy for use during assessment meetings.

192 CMU/SEI-2006-HB-001

5. Probe Architecture
− Did the assessment team adequately probe the architecture to identify weaknesses

and defects not brought out in the subsystem architecture team’s quality cases?
− Were the subsystem architecture team members able to satisfactorily answer all as-

sessment team questions?
− Were deep dives needed in any areas of the subsystem architecture?
− Were scenarios needed to exercise the architecture?

6. Action Item List
− Action Items Identified?

Was the action item list updated based on action items identified during the subsys-
tem architecture assessment phase?

− Assigned with Due Dates?
Have actions been assigned with due dates?

− Tracked to Completion?
Are action items being tracked to completion?

− Action Item List Maintained?
Is the action item list being properly maintained as action items are completed?

D.2.3 Follow-Through Task
The following questions concern the subsystem architecture assessment phase follow-through
task:

1. Outbrief given?

At the end of the subsystem architecture assessment meeting, did the assessment team
develop and present an adequate outbrief to the members of the subsystem architecture
team, and other interested stakeholders (e.g., managers and members of the top-level ar-
chitecture team)?

2. Meeting Minutes
− Developed?

Did the assessment team develop a complete assessment report?
− Minutes Quality?

Was the assessment report reviewed for completeness and factual correctness?
− Distributed?

Was the assessment report distributed to all relevant stakeholders?
− Timeliness?

Were the assessment report developed, reviewed, and distributed within a reasonable
time after the meeting?

3. Lessons Learned
− Were lessons learned during the subsystem architecture assessment phase captured?
− Were these lessons learned used to update the assessment method and associated

training materials?

CMU/SEI-2006-HB-001 193

194 CMU/SEI-2006-HB-001

Appendix E Example Quality Cases

For each relevant quality factor (e.g., availability), the associated quality case consists of the
following three sets of related information:

1. Claims
A claim is an architect’s assertion that his or her architecture adequately supports the as-
sociated type of quality goal or requirements (e.g., availability requirements). These
claims should list62 and/or summarize the specific, relevant quality requirements.

2. Arguments
An argument is one of an architect’s reasons why the assessors should believe his or her
associated claims. Essentially, the architects present clear and compelling arguments list-
ing the specific architectural decisions that they have made (and documented) to ensure
that the system will achieve a sufficient level of the associated type of quality (e.g.,
availability).

3. Evidence
Evidence is the documentation that is provided by the architects to convince the asses-
sors of the validity of the arguments. Typical examples of appropriate evidence consists
of official project documentation including architectural diagrams, architectural models,
architectural documents, architectural white papers, and architectural training materials.
Documentation of architecture drivers (e.g., architecturally significant requirements, as-
sociated use cases) and the architects’ intent (e.g., architectural plans, architectural pro-
cedures, or architecture team charters) is not adequate because it documents neither the
current state of the architecture nor the actual architectural decisions. Valid evidence can
also consist of demonstrations during which the assessors directly witness the incorpora-
tion of architectural decisions; for example, the assessors can observe the incorporation
of redundant hardware into an executable hardware prototype during a tour of a devel-
opment or testing laboratory.

The following sections of this appendix contain architectural quality cases that are general
examples of the kind of claims, arguments, and evidence that architects might present to as-
sessors. These examples have been highly generalized and are not taken from any particular

62 It is insufficient to merely list requirements identifiers (e.g., numbers) because this makes it very

difficult for assessors to understand the relevant requirements. If requirements management tools
are used to assign specific quality factors as attributes to the associated quality requirements and
to trace such requirements to architectural elements, then it becomes practical to select all quality
requirements of a specific type allocated to a specific subsystem and therefore automatically gen-
erate the associated claims (assuming that the subsystem adequately supports its allocated quality
factors).

CMU/SEI-2006-HB-001 195

acquisition or development project. Any relationship to any particular project is purely coin-
cidental.

E.1 Example Interoperability Cases
Interoperability is the degree to which a system (or subsystem) operates effectively with
specified [types of] external systems by successfully providing services and data to those sys-
tems and using services and data provided by those systems.

Interoperability is decomposed into the following subfactors:

• Physical Interoperability
Physical interoperability is the degree to which the system or subsystem physically con-
nects with specified [types of] interfaces with specified [types of] external systems.
Physical interoperability includes matching the
− Electrical Connections – electrical plug type, power rating, number and configura-

tions of prongs, male versus female connection, and so on
− Electronic Connections – number and configuration of pins, male versus female con-

nection, and so on
− Physical Connections – size and shape of surfaces as well as the number, type, orien-

tation, and size of physical connectors such as bolts and screws
− Power Connections – cable, chain, and hose

• Energy Interoperability
Energy interoperability is the degree to which the system or subsystem correctly uses the
energy types and levels of the specified [types of] external systems. Energy interopera-
bility includes
− Hydraulics – fluid type, maximum and minimum pressures, and so on
− Mechanical Linkages – linkage type (e.g., belt, cable, or chain) and average and

maximum force
− Wired Communication – proper logic voltages, frequency, and amperage of electric-

ity such as logic low level (0–1 volts), logic high level (3.5–5.0 volts), 40 megahertz
(MHz), and 100 milliamps

− Wired Power – proper voltages including ranges, AC (alternating current) frequency
including ranges, and maximum amperage of electricity such as 120 volts AC or 270
VDC (volts of direct current) (250–280 VDC), 60 hertz, and 100 milliamps or 150
kilowatts maximum

− Wireless Communication
Wireless communication energy operability includes
− proper electromagnetic frequency (e.g., proper spectrum of radio waves, micro-

waves, or visible light) such as 1850–1990 MHz microwaves for cellular telephone
transmission or C-band for satellite transmission

− broadcast or laser
− minimum/maximum signal strength

196 CMU/SEI-2006-HB-001

• Protocol Interoperability
Protocol interoperability is the degree to which the system or subsystem correctly uses
the interface protocols of the specified [types of] external systems. Protocol interopera-
bility includes compatibility of protocols at the following layers:
− Physical Layer Protocols – Layer 1 protocols such as Integrated Services Digital

Network (ISDN) and RS-232
− Data Link Layer Protocols – Layer 2 protocols such as Ethernet, Fiber Distributed

Data Interface (FDDI), and Point-to-Point Protocol (PPP)
− Network Layer Protocols – Layer 3 protocols such as Internet Control Message Pro-

tocol (ICMP) and Internet Protocol (IP)
− Transport Layer Protocols – Layer 4 protocols such as Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP)
− Session Layer Protocols – Layer 5 protocols such as Network File System (NFS)
− Presentation Layer Protocols – Layer 6 protocols such as American Standard Code

for Information Interchange (ASCII), Moving Picture Experts Group (MPEG), and
Secure Socket Layer (SSL)

− Application Layer Protocols – Layer 7 protocols such as Domain Name Service
(DNS), File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), and Hy-
pertext Transfer Protocol Secure (HTTPS)

• Syntax Interoperability
Syntax interoperability is the degree to which the system or subsystem correctly com-
municates data having the correct syntax (e.g., data types such as text, integer, date, and
money including associated attributes, ranges, and default values) with specified [types
of] external systems.

• Semantics Interoperability
Semantics interoperability is the degree to which the system or subsystem communicates
requests and data via specified [types of] interfaces of the specified [types of] external
systems in a manner that both systems interpret the syntax in a single standard way to
gain the same meanings. Semantic interoperability includes such things as units of
measure (e.g., differentiating between English and metric units or differentiating be-
tween Canadian and United States currency).

Sections E.1.1 and E.1.2 include example interoperability cases for the physical interoperabil-
ity and protocol interoperability quality subfactors of interoperability, respectively.

As illustrated in Figure 23, an interoperability case consists of one or more interoperability
claims, the belief in which is justified by one or more interoperability arguments supported
by one or more pieces of interoperability evidence.

CMU/SEI-2006-HB-001 197

Architecture Interoperability Case

Architecture
Interoperability

Claim

Architecture
Interoperability

Argument

Architecture
Interoperability

Evidence

justifies belief in supports

Architecture Quality Case

Quality Case

Interoperability
Goal

Interoperability-Related
Requirement

claims the architecture
adequately helps the
system achieve its

Architecture
Decision

that improves
Interoperability

Rationale
justifiesInteroperability

Goal Claim
Interoperability

Requirement
Claim

claims the architecture
adequately helps the

system meet its

ensures
achieving

supports

Official
Architecture

Documentation
(e.g., Diagrams,

Models, and
Documents)

Witnessed
Interoperability
Demonstrations
(e.g., Scenarios,

Tests, and
Simulations)

Figure 23: Components of an Architecture Interoperability Case

Figure 24 is an example interoperability quality case diagram showing the relationships be-
tween the different types of interoperability claims, arguments, and evidence.

198 CMU/SEI-2006-HB-001

Goal:
Architecture Supports Interoperability

<<claim>>

Goal:
Architecture

Supports
Physical

Interoperability
<<claim>>

Goal:
Architecture

Supports
Syntax

Interoperability
<<claim>>

Architecture
Decision:
Layered

Architecture
<<argument>>

Goals:
Architecture

Supports
Protocol

Interoperability
<<claim>>

justifies
belief in

Goal:
Architecture

Supports
Energy

Interoperability
<<claim>>

Goal:
Architecture

Supports
Semantics

Interoperability
<<claim>>

Architecture
Decision:
Modular

Architecture
<<argument>>

Architecture
Decision:

Open Interface
Standards

<<argument>>

Architecture
Decision:

Proxies and
Wrappers

<<argument>>

Architecture
Decision:

Service Oriented
Architecture

<<argument>>

Requirements:
Architecture

Supports
Physical

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Syntax

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Protocol

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Energy

Interoperability
<<claim>>

Requirements:
Architecture

Supports
Semantics

Interoperability
<<claim>>

Architecture
Decision:

Fly-By-Wire
<<argument>>

Architecture
Decision:
One-Way

Connections
<<argument>>

Wiring
Diagram

<<evidence>>

Hardware
Schematics

<<evidence>>

Context
Diagram

<<evidence>>

Configuration
Diagram

<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagrams

<<evidence>>

Activity or
Collaboration

Diagrams
<<evidence>>

Interoperability
Whitepaper
<<evidence>>

Vendor-Supplied
Technical

Documentation
<<evidence>>

Layer
Diagram

<<evidence>>

supports

Figure 24: Example Interoperability Quality Case Diagram

CMU/SEI-2006-HB-001 199

E.1.1 Example Physical Interoperability Case
As an interoperability subfactor, physical interoperability is the degree to which the system
or subsystem physically connects with specified [types of] interfaces with specified [types of]
external systems. Physical interoperability includes matching the

• Electrical Connections – electrical plug type, power rating, number and configurations
of prongs, male versus female connection, and so on

• Electronic Connections – number and configuration of pins, male versus female con-
nection, and so on

• Physical Connections – size and shape of surfaces as well as the number, type, orienta-
tion, and size of physical connectors such as bolts and screws

• Power Connections – cable, chain, and hose

The example physical interoperability case is made up of the claims, arguments, and evidence
presented in Sections E.1.1.1, E.1.1.2, and E.1.1.3, respectively.

E.1.1.1 Example Physical Interoperability Claims

The example physical interoperability case includes the following example claims:

• Goals
− Architecture Supports Physical Interoperability Goal

Claim: The architecture adequately supports the system or subsystem’s ability to
physically interoperate with external systems.

• Requirements
− Architecture Supports Physical Interoperability Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived physical interoperability requirements that have been al-
located to it:
− “Subsystem X shall have dimensions 42 cm by 55 cm by 100 cm and attach to sys-

tem Y with attachment types and locations as indicated in table Z.”

E.1.1.2 Example Physical Interoperability Arguments

The example physical interoperability case includes the following example arguments cover-
ing the architectural decisions the architects have made to justify the assessors’ belief in the
associated claims:

• One-Way Connections
Architectural Decision: The system or subsystem architecture uses unique asymmetric
electric, electronic, and physical connections between it and external systems.
Rationale: By using direction and conformation to ensure that connections can only
work one way, it becomes impossible to make incorrect connections.

200 CMU/SEI-2006-HB-001

• Fly-By-Wire
Architectural Decision: The system or subsystem architecture uses electronic rather than
hydraulic connections.
Rationale: Electronic connections produce higher reliability.

• Modularity with Minimal Cohesion
Architectural Decision: The system or subsystem architecture is highly modular with
minimal cohesion between components.
Rationale: High modularity allows architectural elements (modules) to be allocated to
handle interoperation with external systems. Minimizing cohesion decouples these inter-
facing modules from the rest of the architecture.

E.1.1.3 Example Physical Interoperability Evidence

The example physical interoperability case includes the following acceptable example evi-
dence that could be supplied by the architects to support their associated arguments:

• Context Diagram
The context diagram shows the external systems or hardware components with which
the system or subsystem physically interoperates.

• Configuration Diagram
The configuration diagram shows the hardware components that physically interoperate.

• Hardware Diagrams
Hardware diagrams show the physical connections between hardware components that
physically interoperate.

• Interoperability White Paper
The interoperability white paper describes how physical interoperability is implemented
including how it is supported by the architecture.

• Wiring Diagrams
Wiring diagrams show how physical components are physically connected together.

E.1.2 Example Protocol Interoperability Case
As an interoperability subfactor, protocol interoperability is the degree to which the system
or subsystem correctly uses the interface protocols of the specified [types of] external sys-
tems.

The example protocol interoperability case is made up of the claims, arguments, and evidence
presented in Sections E.1.2.1, E.1.2.2, and E.1.2.3, respectively.

E.1.2.1 Example Protocol Interoperability Claims

The example protocol interoperability case includes the following example claims:

CMU/SEI-2006-HB-001 201

• Goals
− Architecture Supports Protocol Interoperability Goals

Claim: The architecture adequately supports the system or subsystem’s ability to
achieve the following derived protocol goals that have been allocated to it:
− “The system or subsystem shall correctly use the interface protocols of all relevant

external systems.”
− “The system or subsystem shall use open interface standards (i.e., industry stan-

dard protocols) when communicating with external systems.”

• Requirements
− Architecture Supports Protocol Interoperability Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived protocol interoperability requirements that have been al-
located to it:
− “The system or subsystem shall use open interface standards (i.e., industry stan-

dard protocols) when communicating with external systems across all key inter-
faces identified in document X.”

− “The system or subsystem shall use the Ethernet over RS-232 for communication
across interface X with external system Y.”

− “The system shall use HTTPS for communicating securely when performing func-
tion X across interface Y with external system Z.”

E.1.2.2 Example Protocol Interoperability Arguments

The example protocol interoperability case includes the following example arguments cover-
ing the architectural decisions the architects have made to justify the assessors’ belief in the
associated claims:

• Layered Architecture
Architectural Decision: The system architecture will consist of the following horizontal
layers including:
− Interface Layer, which contains software for communication with human users and

external systems
− Application Process Layer, which contains and hides application-level processes and

transactions
− Business Layer, which contains and hides business rules and business objects
− Persistence Layer, which contains and hides system-specific databases
− Legacy Layer, which provides proxies for legacy applications and databases
Rationale: A layered architecture contains, logically groups, separates, and hides differ-
ent parts of the system. The interface layer supports interoperability with external sys-
tems, whereas the legacy layer supports interoperability with legacy systems.

• Modular Architecture
Architectural Decision: The system architecture will consist of a relatively large number
of small, cohesive, modular subsystems and sub-subsystems with their implementations
hidden behind well-defined interfaces.

202 CMU/SEI-2006-HB-001

Rationale: Using a highly modular architecture will support the creation of modules that
act as local proxies for the external systems with which the system must interoperate. As
such, they will act as wrappers that hide the external interfaces.

• Proxies and Wrappers
Architectural Decision: For each external client and server system with which the sys-
tem must interoperate, the system architecture will include one module that act as a
proxy for that external system. The proxy model will act as a wrapper hiding the inter-
faces to the external system.

Rationale: Proxies localize and wrap all information about the external interfaces, mak-
ing it easier to change them.

• Service-Oriented Architecture (SOA)
Architectural Decision: The system architecture will be based on the SOA pattern to
provide software as Web services over the Internet. It will use standard Web Services In-
teroperability Organization’s63 (WS-I) Basic Profile 1.0 consisting of the Extensible
Markup Language (XML) Schema 1.0 and associated protocols: Simple Object Access
Protocol (SOAP) 1.1, Web Services Description Language (WSDL) 1.1, and Universal
Description, Discovery, and Integration (UDDI) 2.0. The system will register (i.e., pub-
lish) its services with a Web services directory so that clients of the system can bind and
invoke (i.e., execute) the services.

Rationale: Interoperability and portability are the primary principles underlying the SOA
pattern. Use of standard languages and protocols enable interoperability between hetero-
geneous systems. Web services are software components with well-defined interfaces
that hide their implementation technologies. Web services are self-contained, loosely
coupled, and dynamically discovered.

E.1.2.3 Example Protocol Interoperability Evidence

The example protocol interoperability case includes the following acceptable example evi-
dence that could be supplied by the architects to support their associated arguments:

• Context Diagram
The context diagram shows the context of the system in terms of the external systems
with which it must interoperate. It therefore identifies and names the interfaces to these
external systems. It potentially provides evidence of the open interface standards used
on these external interfaces by identifying the type of interface and listing its protocol.

• Configuration Diagram
The configuration diagram shows the aggregation hierarchy of the system in terms of its
subsystems, their subsystems, and so on. It therefore provides evidence of the
− modularity of the system’s architecture
− existence of the architectural components that

63 For more information, visit http://www.ws-i.org/.

CMU/SEI-2006-HB-001 203

http://www.ws-i.org

− act as proxies for (or wrappers around) external systems
− provide Web services

• Allocation Diagram
The allocation diagram shows the allocation of data and software components to the
hardware components of the system architecture. It therefore provides some evidence of
the modularity of the system architecture.

• Layer Diagram
The layer diagram identifies the horizontal layers of software that make up the system
and implicitly shows the limitation of internal interfaces between these layers. It there-
fore provides clear and direct evidence that a layered architecture pattern was used.

• Activity/Collaboration Diagram (treating subsystems as objects)
Activity and collaboration diagrams show the interactions between the classes that make
up the system. When used as architecture diagrams, the classes represent subsystems,
sub-subsystems, and so on. These diagrams therefore provide evidence of the
− names and locations of proxies and wrappers
− services of the SOA and how they are accessed and used

• Interoperability White Paper
The interoperability white paper documents architectural styles, patterns, and mecha-
nisms used to achieve protocol interoperability.

• Vendor-Supplied Technical Documentation
Vendor-supplied technical documentation documents commercial off-the-shelf (COTS)
product support for standard SOA protocols including XML, SOAP, WSDL, and UDDI.

E.2 Example Performance Cases
Performance is the degree to which a system or subsystem operates within its designated
temporal constraints. The quality subfactors of performance include jitter, latency, response
time, schedulability, and throughput.

Sections E.2.1 and E.2.2 include example performance cases for the jitter and latency quality
subfactors of performance, respectively.

As illustrated in Figure 25, a performance case consists of one or more performance claims,
the belief in which is justified by one or more performance arguments supported by one or
more pieces of performance evidence.

204 CMU/SEI-2006-HB-001

Figure 25: Components of a Performance Case

Figure 26 is an example performance quality case diagram showing the relationships between
the different types of performance claims, arguments, and evidence.

Goal:
Architecture Supports Performance

<<claim>>

Goal:
Architecture
Limits Jitter
<<claim>>

Goal:
Architecture

Limits Latency
<<claim>>

Architecture
Decision:

Real-Time
Operating System

<<argument>>

Goal:
Architecture Limits

Response Time
<<claim>>

justifies
belief in

Goal:
Architecture Supports

Schedulability
<<claim>>

Goal:
Architecture Supports

Throughput
<<claim>>

Requirements:
Architecture Limits

Response Time
<<claim>>

Requirements:
Architecture Supports

Schedulability
<<claim>>

Requirements:
Architecture Supports

Throughput
<<claim>>

Requirements:
Architecture
Limits Jitter
<<claim>>

Requirements:
Architecture

Limits Latency
<<claim>>

Architecture
Decision:

Deterministic
Scheduling

<<argument>>

Architecture
Decision:
Layered

Architecture
<<argument>>

Architecture
Decision:

Redundant
Servers with

Load Balancing
<<argument>>

Architecture
Decision:
Hardware
Selection

<<argument>>

Architecture
Decision:

Rate Monotonic
Scheduling

<<argument>>

Architecture
Decision:
Sampled

Approach for
Real-Time I/O
<<argument>>

Architecture
Decision:
COTS I/O

Timer Board
<<argument>>

Architecture
Decision:

Real-Time
Middleware

<<argument>>

Figure 26: Example Performance Quality Case Diagram

CMU/SEI-2006-HB-001 205

E.2.1 Example Jitter Performance Case
As a performance subfactor, jitter is the degree to which the variability of the time intervals
between controlled periodic actions remains within its designated constraints.

Goal:
Architecture Supports Performance

<<claim>>

Goal:
Architecture
Limits Jitter
<<claim>>

Architecture
Decision:

Real-Time
Operating

System
<<argument>>

justifies belief in

Requirements:
Architecture
Limits Jitter
<<claim>>

Architecture
Decision:
COTS I/O

Timer Board
<<argument>>

Quality Factor

Quality Subfactor

Architecture
Document

<<evidence>>

Product
Technical

Documentation
<<evidence>>

Product
Trade Study

<<evidence>>

Performance
Whitepaper

<<evidence>>

System
Object Model
<<evidence>>

Allocation
Diagram

<<evidence>>

HW Block
Diagram

<<evidence>>

supports

Figure 27: Example Jitter Quality Case Diagram

206 CMU/SEI-2006-HB-001

The example jitter performance case is made up of the claims, arguments, and evidence pre-
sented in Sections E.2.1.1, E.2.1.2, and E.2.1.3, respectively.

E.2.1.1 Example Jitter Claims

The example jitter performance case includes the following example claims:

• Goals
− Architecture Supports Jitter Goal

Claim: The architecture adequately supports the system or subsystem’s ability to con-
strain jitter to acceptable limits.

• Requirements
− Architecture Supports Jitter Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived jitter requirement that has been allocated to it:
− “The robotic surgery system shall control the blade actuator input/output (I/O)

with a jitter of less than one tenth of a millisecond.”

E.2.1.2 Example Jitter Arguments

The example jitter performance case includes the following example arguments covering the
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims:

• Real-Time Operating System (OS)
Architectural Decision: The system architecture incorporates a proprietary COTS real-
time operating system from a well-established vendor.

Rationale: The real-time OS comes with the needed device drivers and with design tools
that engineers have been trained to use. It also comes with deterministic, real-time re-
source management including jitter management on I/O.

• COTS HW I/O Timer Board
Architectural Decision: The system architecture incorporates a COTS hardware I/O
board with sufficient channels, timer resolutions, and on-board buffer size to handle the
required traffic jitter requirement.

Rationale: The server processor board does not have adequate time resolution to handle
the jitter requirements.

E.2.1.3 Example Jitter Evidence

The example jitter performance case includes the following acceptable example evidence that
could be supplied by the architects to support their associated arguments:

CMU/SEI-2006-HB-001 207

• Architecture Document
The architecture document provides a high-level overview the system architecture’s in-
corporation of a
− real-time operating system
− COTS I/O Timer Board

• Product Technical Documentation
The vendors’ product technical documentation documents the
− real-time operating system technical characteristics
− COTS I/O Timer Board technical characteristics

• Product Trade Studies
Product trade studies document the
− real-time operating system technical characteristics (operating system trade study)
− COTS I/O Timer Board technical characteristics (timer board trade study)

• Performance White Paper
The performance white paper provides a detailed analysis of the system architecture’s
incorporation of (and rationale for)
− real-time operating system
− COTS I/O Timer Board

• System Object Model
The system object model identifies the real-time operating system and possibly also the
COTS I/O Timer Board as system objects and the relationships between them and other
system objects.

• Allocation Diagram
The allocation diagrams document how the real-time operating system is allocated onto
the selected hardware.

• Hardware Block Diagram
The system hardware block diagrams show how the COTS I/O Timer Board is con-
nected to other hardware components.

E.2.2 Example Latency Performance Case
As a performance subfactor, latency is the degree that the time that the system or subsystem
takes to execute specific tasks (e.g., system operations and use case paths) from end-to-end is
within acceptable limits.

208 CMU/SEI-2006-HB-001

Goal:
Architecture Supports Performance

<<claim>>

Goal:
Architecture

Limits Latency
<<claim>>

Architecture
Decision:

Real-Time
Operating

System
And Middleware
<<argument>>

justifies belief in

Requirements:
Architecture

Limits Latency
<<claim>>

Architecture
Decision:

Rate-
Monotomic
Scheduling

<<argument>>

Architecture
Decision:
Hardware
Selection

<<argument>>

Architecture
Decision:
Sampled

Approach for
Real-Time I/O
<<argument>>

Architecture
Decision:

Redundant
Servers with

Load Balancing
<<argument>>

Quality Factor

Quality Subfactor

Architecture
Document

<<evidence>>

Product
Technical

Documentation
<<evidence>>

Product
Trade Study

<<evidence>>

Performance
Whitepaper

<<evidence>>

System
Object Model
<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagram

<<evidence>>

Hardware
Block

Diagram
<<evidence>>

Timing
Diagram

<<evidence>>

Assessor-
Witnessed

Architecture
Simulation

<<evidence>>

supports

Figure 28: Example Latency Quality Case Diagram

The example latency performance case is made up of the claims, arguments, and evidence
presented in Sections E.2.2.1, E.2.2.2, and E.2.2.3, respectively.

E.2.2.1 Example Latency Claims

The example latency performance case includes the following example claims:

CMU/SEI-2006-HB-001 209

• Goals
− Architecture Supports Latency Goal

Claim: The architecture adequately supports the system or subsystem’s ability to con-
strain latency to acceptable limits.

• Requirements
− Architecture Supports Latency Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived latency requirements that have been allocated to it:
− Hard Deadline Requirement

“The Vat Subsystem shall send either a Vat Sensor Values message or a Sensor
Data Unavailable message to the Production Control Subsystem once every 50
milliseconds.”

− Soft Deadline Requirement
“The Vat Subsystem shall send Vat Sensor Values messages and Sensor Data Un-
available messages to the Production Control Subsystem in such a manner that Vat
Sensor Value messages are not separated by more than four consecutive Sensor
Data Unavailable messages.”

E.2.2.2 Example Latency Arguments

The example latency performance case includes the following example arguments covering
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims:

• Real-Time Operating System and Middleware
Architectural Decision: The system architecture incorporates a proprietary COTS real-
time operating system from a well-established vendor.

Rationale: The real-time operating system and middleware enables the use of rate-
monotonic scheduling, which will be used to support the meeting of the latency re-
quirements (see next).

• Rate-Monotonic Scheduling (RMS)
Architectural Decision: The system architecture requires that all subsystems having real-
time latency requirements incorporate COTS hardware, a real-time OS, and real-time
middleware that either directly support RMS or permit the building of “scheduling”
wrappers with sufficiently small schedulability penalties.

Rationale: The architecture’s use of RMS not only helps the system to meet its latency
requirements, it also supports end-to-end schedulability analysis to show during early
development that these requirements can be met. RMS was also chosen because
− All real-time traffic is either periodic or can be buffered and handled by periodic ser-

vices, a prerequisite for RMS.
− RMS is supported by most hardware and software real-time standards and standards-

compliant COTS products.

210 CMU/SEI-2006-HB-001

− RMS is a mathematically sound method guaranteeing schedulability under the sys-
tem’s conditions.

− The system traffic profiles can be handled by RMS.

• Hardware Selection
Architectural Decision: The system architecture incorporates N1 hardware clients of type
HC1, N2 hardware servers of type HS2, N3 network devices of type ND3, N4 storage de-
vices of type SD4, and N5 networks of type N5

 . 64

Rationale: This selection of hardware devices provides the hardware capacity needed to
achieve latency requirements under current workloads as well as providing adequate ca-
pacity to continue to meet latency requirements under future planned growth. This was
determined in an iterative manner using schedulability analysis in light of current esti-
mates of subsystem workloads and communication patterns.

• Software and Communications Allocation
Architectural Decision: The system architecture allocates process P1 to node N1 and
processes P2 and P3 to note N2, etc. The system architecture constrains node-to-node
communication to message traffic pattern MTP1.

Rationale: This allocation of processors to nodes keeps node workloads at shared re-
sources within their scheduling constraints. This constraint on communication traffic
avoids communication bottle-necks, lowers message hop count by minimizing indirec-
tions, and thereby keeps the sum of delays incurred at shared resources low enough to
meet end-to-end latency requirements.

• Redundant Servers with Load-Balancing
Architectural Decision: The system architecture incorporates load balancing of redun-
dant servers.

Rationale: Load-balancing helps to minimize scheduling bottlenecks at nodes, which in
turn helps the system meet its latency requirements.

• Sampled Approach for Real-Time I/O
Architectural Decision: The system architecture incorporates a sampled approach for all
real-time I/O between its subsystems.

Rationale: Using a sampled approach (combined with the production of software-
supporting fault tolerance) facilitates the system meeting its latency requirements even if
an upstream node occasionally misses a deadline. This architectural approach is made
possible because the subsystems have well-synchronized clocks with the required timing
resolution.

64 In real life, the architects would provide actual hardware information including such details as

number of I/O channels and network bandwidth. Workloads are based on projected usage and
schedulability analysis.

CMU/SEI-2006-HB-001 211

E.2.2.3 Example Latency Evidence

The example latency case includes the following acceptable example evidence that could be
supplied by the architects to support their associated arguments:

• Architecture Document
The architecture document provides a high-level overview the system architecture’s in-
corporation of
− real-time operating system and middleware
− rate-monotonic scheduling
− the selected hardware
− redundant servers with load balancing
− a sampled approach for real-time I/O

• Product Technical Documentation
The vendors’ product technical documentation documents the
− real-time operating system and middleware used including its technical characteris-

tics
− selected hardware including servers, storage, and network devices

• Product Trade Studies
Product trade studies document the
− real-time operating system and middleware used including its technical characteris-

tics (software trade study)
− selected hardware including servers, storage, and network devices (server trade study,

storage trade study, and network trade study, respectively)

• Performance White Paper
The performance white paper provides a detailed analysis of the system architecture’s
incorporation of (and rationale for)
− real-time operating system and middleware
− rate-monotonic scheduling
− the selected hardware
− redundant servers with load balancing
− a sampled approach for real-time I/O

• System Object Model
The system object model identifies the real-time operating system, the real-time mid-
dleware, and the hardware components as system objects and the relationships between
them.

• Allocation Diagram
The allocation diagrams document how the real-time operating system and middleware
are allocated onto the selected hardware including the redundant servers.

• Hardware Block Diagram
The system hardware block diagram shows how the selected hardware components are
connected including the redundant servers used for load balancing.

212 CMU/SEI-2006-HB-001

• Network Diagram
The system network diagram shows how the selected hardware components are net-
worked including the redundant servers used for load balancing.

• Timing Diagram
The timing diagram documents how rate-monotonic scheduling is incorporated into the
deterministic scheduling of frames.

• Assessor-Witnessed Architecture Simulation
The assessors witness a simulation of the executable architecture demonstrating that cer-
tain latency requirements are met under specific circumstances.

E.3 Example Security Cases
Security is the degree to which

• a system or subsystem prevents or reduces in probability or severity, detects, reacts to,
and adapts to
− malicious (i.e., unplanned and unintended but not necessarily unexpected by legiti-

mate stakeholders) harm65 to valuable assets caused by attackers
− security events (i.e., attacks and probes)
− vulnerability to threats (i.e., existence of attackers with means, motives, and opportu-

nities)
• security risks associated with the system or subsystem are acceptably low

Note that the architecture of a system or subsystem may need to support requirements for the
following subclasses of security:

• Communications Security (COMSEC)
COMSEC is the degree to which communications are protected from attack.

• Computer Security (COMPUSEC)
COMPUSEC is the degree to which computers are protected from attack.

• Emissions Security (EMSEC or Tempest)
EMSEC is the degree to which systems do not emit radiation that is subject to attack.

• Information Security (INFOSEC)
INFOSEC is the degree to which stored and manipulated data are protected from attack.

65 For example, information security is technically concerned with preventing and detecting the ma-

licious disclosure of sensitive identities, data, and communications during an attack, whereas
safety is concerned with preventing and detecting their accidental disclosure during an accident.
Note that both attacks and accidents can result in the same harm to valuable assets (i.e., to indi-
viduals, organizations, and their sensitive data) and that the architects can give the same argu-
ments as part of both safety and security cases because they can use the same architectural mecha-
nisms (controls) as both safeguards and countermeasures.

CMU/SEI-2006-HB-001 213

• Network Security (NETSEC)
NETSEC is the degree to which networks are protected from attack.

• Operations Security (OPSEC)
OPSEC is the degree to which system operations are protected from attack.

• Personal Security (PERSEC)
PERSEC is the degree to which personnel are protected from attack.

• Physical Security (PHYSEC)
PHYSEC is the degree to which systems, data centers, and other facilities are protected
from physical attack.

As illustrated in Figure 29, a security case is a kind of quality case that consists of the follow-
ing three components:

1. Security Claims
Assertions made by the architects that the architecture of the system or subsystem being
assessed sufficiently supports the achievement of its allocated and derived security-
related goals and requirements

2. Security Arguments
Adequate clear and compelling reasons to believe claims consisting of a listing of the ar-
chitects’ relevant architectural decisions (and associated rationales) that were made to
ensure that the architecture sufficiently supports the achievement of its allocated secu-
rity-related requirements claim

3. Security Evidence
Sufficient evidence backing up the architects’ arguments consisting of official documen-
tation clearly indicating the architects’ relevant architectural decisions

Security Case

Security
Claim

Security
Argument

Security
Evidence

justifies belief in supports

Quality Case

Figure 29: Components of a Security Case

A concern of presenting a security case is that the security claims (i.e., meeting security-
related requirements and constraints), arguments (aka, countermeasures), and evidence (e.g.,
documentation of countermeasures) may itself be highly sensitive (e.g., classified or highly

214 CMU/SEI-2006-HB-001

proprietary). Thus for example, only those members of the assessment team with the proper
security clearances may be allowed to examine the security perspectives of the architecture.
Although the task of assessing the security aspects of the architecture may be delegated to a
security team that is responsible for verifying the system’s security, it is important that they
include people adequately trained in system architecture and properly assess the system ar-
chitecture early during the development process.

Security claims are stated in terms the relevant security-related requirements allocated to the
system or subsystem, the architecture of which is being assessed. These requirements include
security requirements, security-significant requirements (i.e., other requirements having sig-
nificant security ramifications), requirements of security subsystems, and security con-
straints.66 Security requirements in turn specify that the system or subsystem shall provide at
least a minimum acceptable amount of security in terms of preventing, detecting, reacting to,
and adapting to malicious harm to valuable assets,67 the occurrence of security events (probes
and attacks), threats, and security risks.

Sections E.3.1, E.3.2, E.3.3, and E.3.4 include example security cases for the access control,
integrity, privacy, and security auditing subfactors of security, respectively.

E.3.1 Example Access Control Security Case
Access control is the degree to which a system or subsystem controls access by its externals
(e.g., human users, external software applications, and external systems) to its data and soft-
ware components. Access control consists of

• Identification
Identification is the degree to which the system or subsystem establishes the claimed
identities of externals (e.g., people, roles, systems) before allowing them to request and
receive services (e.g., perform functions, obtain data).

• Authentication
Authentication is the degree to which the system or subsystem verifies the claimed iden-
tities of externals before allowing them to request and receive services (e.g., perform
functions, obtain data).

66 A security constraint specifies a countermeasure as a requirement. Requirements engineers must

take care not to tie the security architect’s hands by unnecessarily specifying a countermeasure
(e.g., mandatory use of user IDs and passwords) instead of the underlying true requirement (e.g.,
that the system must adequately identify and authenticate its users).

67 Valuable assets include people, property (e.g., data, hardware, software, and money), the environ-
ment, and services. Examples of harm to these assets include injury to people, access to or corrup-
tion of sensitive data, theft or corruption of hardware, infection of software, theft of money, and
theft or denial of services.

CMU/SEI-2006-HB-001 215

• Authorization
Authorization is the degree to which a system or subsystem properly grants and enforces
access and usage privileges of authenticated externals.

Figure 30 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example access control security case.

Goal:
Architecture Supports Access Control

<<claim>>

Goal:
Architecture Supports

Identification
<<claim>>

Goal:
Architecture Supports

Authentication
<<claim>>

Architecture Decision:
Access Control Subsystem

<<argument>>

Configuration
Diagram

<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagrams

<<evidence>>

Activity or
Collaboration

Diagrams
<<evidence>>

Security
Whitepaper

<<evidence>>

Access Control
COTS

Trade Study
<<evidence>>

Vendor-Supplied
Technical

Documentation
<<evidence>>

Goal:
Architecture Supports

Authorization
<<claim>>

Requirements:
Architecture Supports

Identification
<<claim>>

Requirements:
Architecture Supports

Authentication
<<claim>>

Requirements:
Architecture Supports

Authorization
<<claim>>

justifies
belief in

support

Architecture Decision:
Biometrics Component

<<argument>>

Figure 30: Example Access Control Quality Case Diagram

216 CMU/SEI-2006-HB-001

The example access control security case is made up of the claims, arguments, and evidence
presented in Sections E.3.1.1, E.3.1.2, and E.3.1.3, respectively.

E.3.1.1 Example Access Control Claims

The example access control security case includes the following example claims:

• Goals
− Architecture Supports Access Control

Claim: The architecture adequately supports the system or subsystem’s ability to
grant and restrict usage of sensitive services and access to sensitive data.
− Architecture Supports Identification

Claim: The architecture adequately supports the system or subsystem’s ability to
identify users (i.e., human, external systems or applications, and other subsystems)
before granting them usage of sensitive services and access to sensitive data.

− Architecture Supports Authentication
Claim: The architecture adequately supports the system or subsystem’s ability to
verify the correctness of the claimed identities of users before granting them usage
of sensitive services and access to sensitive data.

− Architecture Supports Authorization
Claim: The architecture adequately supports the system or subsystem’s ability to
properly grant and enforce access and usage privileges of authenticated and identi-
fied users.

• Requirements
− Architecture Supports Identification Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived identification requirements that have been allocated to it:
− “The system shall allow [members of user class X | client application Y] to per-

form [list of actions Z] before being successfully identified.”
− “The system shall not allow [members of user class X | client application Y] to

perform [any | list of actions Z] before being successfully identified.”
− “When under attack, the system shall [detect | prevent] the use of forged identifica-

tion data.”
− “When the system detects the use of forged identification data, then the system

shall [list of actions X].”
− “The system shall [detect | prevent] the reuse of identification data.”
− “The system shall not require [members of user class X | client application Y] to be

reidentified multiple times during a single session (i.e., single sign on).”
− “The system shall reidentify [members of user class X | client application Y] under

[list of conditions].”
− “The system shall only provide the following feedback to [members of user class

X | client application Y] during and as a result of identification.”
− “The data center shall identify all personnel before allowing them to enter.”
− “The name of the employee in the official human resource and payroll databases

shall exactly match the name printed on the employee’s social security card.”

CMU/SEI-2006-HB-001 217

Rationale: This is an official requirement of the United States Social Security Ad-
ministration.

− “The system shall support [list of identification mechanisms].”
Note: This is a security constraint rather than a normal requirement.

− “The system shall identify [user class X] according to [list of identification proc-
esses].”
Note: This is also a security constraint.

− Architecture Supports Authentication Requirements
Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived authentication requirements that have been allocated to it:
− “The system shall allow [member of user class X | client application Y] to perform

[list of actions Z] before being successfully authenticated.”
− “The system shall not allow [member of user class X | client application Y] to per-

form [any actions | list of actions Y] before being successfully authenticated.”
− “When under attack, the system shall [detect | prevent] the use of any forged au-

thentication data.”
− “When the system detects the use of forged authentication data, then the system

shall [list of actions X].”
− “The system shall [detect | prevent] the reuse of authentication data.”
− “The system shall reauthenticate [member of user class X | client application Y]

under [list of conditions].”
− “The system shall only provide the following feedback to [member of user class X

| client application Y] during and as a result of authentication.”
− “The system shall authenticate all of its users before allowing them to update their

user information.”
− “The system shall authenticate all of its users before accepting a credit card pay-

ment.”
− “The system shall authenticate all of its client applications before allowing them to

use its capabilities.”
− “The data center shall verify the identity of all personnel before permitting them to

enter.”
− Architecture Supports Authorization Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived authorization requirements that have been allocated to it:
− “The system or subsystem shall allow each customer to obtain access to all of his

or her own personal account information.”
− “The system or subsystem shall not allow any customer to access any account in-

formation of any other customer.”
− “The system or subsystem shall not allow customer service agents to access the

credit card information of customers.”
− “The system or subsystem shall allow customer service agents to automatically

email a new customer password to that customer’s email address.”
Note: This authorization requirement is questionable because it contains an implied
authentication constraint—the use of passwords as opposed other authentication
mechanisms such as digital signatures.

218 CMU/SEI-2006-HB-001

− “The system or subsystem shall not allow customer service agents to access either
the original or new customer password when emailing the new customer password
to the customer’s email address.”

− “The system or subsystem shall limit remote users to the following services: [list
of services].”

− “The system or subsystem shall not allow one or more users to successfully use a
denial of service (DoS) attack to flood it with legitimate requests of service.”

E.3.1.2 Example Access Control Arguments

The example access control security case includes the following example arguments covering
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims:

• Access Control Subsystem
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS access control application.
Rationale: This access control application performs the identification, authentication,
and authorization of users. It utilizes user identifiers, passwords, biometrics, digital sig-
natures, and more to identify and authenticate users of the system or subsystem being
assessed.

E.3.1.3 Example Access Control Evidence

The example access control security case includes the following acceptable example evidence
that could be supplied by the architects to support their associated arguments:

• Configuration Diagram
The configuration diagram provides evidence for the existence of the access control sub-
system by clearly showing the decomposition of the aggregate system or subsystem into
its component subsystems, one of which is identified as the access control subsystem.

• Allocation Diagram
The allocation diagram provides evidence for the location of the access control subsys-
tem by clearly showing the allocation of the access control software subsystem to a spe-
cific hardware server computer.

• Network Diagrams
The network diagram provides evidence for the network connectivity of the access con-
trol subsystem to the servers hosting the services the access control subsystem protects,
the storage devices hosting the sensitive data the access control subsystem protects, and
related networks and network devices. This allows the architects to show how the net-
work connectivity of the access control subsystem enables it to protect the associated
services and sensitive data.

• Activity and Collaboration Diagrams
The activity and collaboration diagrams provide evidence of the interactions between
the access control subsystem, other subsystems, users, and external systems. This allows

CMU/SEI-2006-HB-001 219

the architects to show how the interactions involving the access control subsystem en-
able it to protect the associated services and sensitive data.

• Access Control COTS Trade Study
The access control trade study provides evidence in the form of an evaluation of the
various COTS access control products, their vendors, and the relative ability of these
products to meet the access control requirements of the system or subsystem. This al-
lows the architects to demonstrate the adequacy of the chosen product to meet its allo-
cated identification, authentication, and authorization requirements.

• Vendor-Supplied Technical Documentation
The vendor-supplied technical documentation for the selected access control product
provides evidence that the product has the capabilities needed to meet the access control
requirements of the system or subsystem.

• Security White Paper
The access control section of the security white paper supplied by the architects provides
evidence in the form of a description of the capabilities of the chosen access control
product and the results of an analysis of the adequacy of this product. This allows the
architects to demonstrate the adequacy of the chosen product to meet its allocated identi-
fication, authentication, and authorization requirements.

E.3.2 Example Integrity Security Case
Integrity is the degree to which communications or data, hardware, or software components
are protected from intentional corruption (e.g., via unauthorized creation, modification, dele-
tion, or replay). As illustrated in Figure 31, because integrity is a subtype of the defensibility
quality subfactors malicious harm and protection and because security is a subtype of defen-
sibility, integrity is a quality subfactor of the quality factor security.

220 CMU/SEI-2006-HB-001

Security
<<quality factor>>

Protection
<<quality

subfactor>>

Malicious Harm
<<quality

subfactor>>

Integrity
<<quality subfactor>>

Defensibility Problem
<<quality subfactor>>

Defensibility Solution
<<quality subfactor>>

Defensibility
<<quality factor>>

Detection
<<quality

subfactor>>

Reaction
<<quality

subfactor>>

Security
Events

<<quality
subfactor>>

Threats
<<quality

subfactor>>

Security
Risks

<<quality
subfactor>>

Figure 31: Integrity as a Quality Subfactor of Security

Figure 32 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example integrity security case.

CMU/SEI-2006-HB-001 221

Goal:
Architecture Supports Integrity

<<claim>>

Goal:
Architecture Supports

Communications Integrity
<<claim>>

Goal:
Architecture Supports

Data Integrity
<<claim>>

Architecture
Decision:

Encryption /
Decryption
Subsystem

<<argument>>

Configuration
Diagram

<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagrams

<<evidence>>

Activity or
Collaboration

Diagrams
<<evidence>>

Security
Whitepaper

<<evidence>>

Integrity
COTS

Trade Study
<<evidence>>

Vendor-Supplied
Technical

Documentation
<<evidence>>

Goal:
Architecture Supports

Software Integrity
<<claim>>

Goal:
Architecture Supports

Hardware Integrity
<<claim>>

Requirements:
Architecture Supports

Communications Integrity
<<claim>>

Requirements:
Architecture Supports

Data Integrity
<<claim>>

Requirements:
Architecture Supports

Software Integrity
<<claim>>

Requirements:
Architecture Supports

Hardware Integrity
<<claim>>

Architecture
Decision:

Anti-Malware
Subsystem

<<argument>>

Architecture
Decision:

Physical Security
Countermeasures

<<argument>>

Architecture
Decision:
Intrusion
Detection

Subsystem
<<argument>>

Architecture
Decision:

Tamper-Proofing
<<argument>>

Architecture
Decision:

Network Security
Devices

<<argument>>

justify
belief

in

Facility Plans
<<evidence>>

Security
Policy

<<evidence>>

Hardware
Schematics

<<evidence>>

Data Flow
Diagrams

<<evidence>>

support

Figure 32: Example Integrity Security Quality Case Diagram

The example integrity security case is made up of the claims, arguments, and evidence pre-
sented in Sections E.3.2.1, E.3.2.2, and E.3.2.3, respectively.

E.3.2.1 Example Integrity Claims

The example integrity security case includes the following example claims:

• Goals
− Architecture Supports Integrity

Claim: The architecture adequately supports the system or subsystem’s ability to pro-
tect communications, data, hardware, and software from intentional corruption (e.g.,
via unauthorized creation, modification, deletion, or replay).

222 CMU/SEI-2006-HB-001

− Architecture Supports Communications Integrity
Claim: The architecture adequately supports the system or subsystem’s ability to
ensure the integrity of communications by protecting them from intentional cor-
ruption (e.g., via unauthorized creation, modification, deletion, or replay).

− Architecture Supports Data Integrity
Claim: The architecture adequately supports the system or subsystem’s ability to
ensure the integrity of stored data by protecting it from intentional corruption (e.g.,
via unauthorized creation, modification, deletion, or duplication).

− Architecture Supports Hardware Integrity
Claim: The architecture adequately supports the system or subsystem’s ability to
ensure the integrity of hardware by protecting it from intentional corruption (e.g.,
via unauthorized creation, modification, destruction, or theft).

− Architecture Supports Software Integrity
Claim: The architecture adequately supports the system or subsystem’s ability to
ensure the integrity of software by protecting it from intentional corruption (e.g.,
via unauthorized creation, modification, deletion, or theft) by attackers or malware
(i.e., malicious software including computer viruses, worms, Trojan horses, ad-
ware, and spyware).

• Requirements
− Architecture Supports Communications Integrity Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived communications integrity requirements that have been al-
located to it:
− Data Transmitted Integrity Protection Requirement

“The system or subsystem shall protect the data it transmits from [sophistication
level] attack involving unauthorized addition, modification, deletion, or replay
when it transmits the data during the execution of [a set of interactions/use cases]
listed in [specified table].”

− Data Received Integrity Detection Requirement
“The system or subsystem shall determine if communicated data it receives has
been modified, if additional data has been added to it, if some protected data has
been deleted, and if any protected data has been replayed during execution of [a set
of interactions/use cases] when subject to [sophistication level] attack as indicated
in [specified table].”

− Data Received Integrity Response Requirement
“The system or subsystem shall perform [list of application-specific actions]
within [time limit] if communicated data it receives has been modified, if addi-
tional data has been added to it, if some protected data has been deleted, and if any
protected data has been replayed during execution of [a set of interactions / use
cases] when subject to [sophistication level] attack as indicated in [specified ta-
ble].”

− Architecture Supports Data Integrity Requirements
Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived data integrity requirements that have been allocated to it:
− Data Stored Integrity Protection Requirement

“At least [a percentage such as 99.99%] of the time, the system or subsystem shall

CMU/SEI-2006-HB-001 223

protect the data in [specified table] it stores from unauthorized addition, modifica-
tion, or deletion by [attacker with specified profile | malware of specified type].”

− Data Stored Integrity Detection Requirement
“At least [a percentage such as 99.99%] of the time, the system or subsystem shall
detect the unauthorized addition, modification, or deletion the data in [specified
table] it stores.”

− Architecture Supports Hardware Integrity Requirements
Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived hardware integrity requirements that have been allocated
to it:
− Hardware Integrity Protection Requirement

“At least [a percentage such as 99% of the time, the X hardware component shall
protect itself from unauthorized addition, modification, destruction, or theft from
an attacker having [attacker profile] using [list of attack techniques] for no longer
than [time duration].”

− Hardware Integrity Detection Requirement
“The X hardware device shall be constructed so that successful tampering is easily
detectable.”

− Architecture Supports Software Integrity Requirements
Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived software integrity (e.g., immunity) requirements that have
been allocated to it:
− Scanning Requirement

“The system or subsystem shall scan all entered or downloaded data and software
against the published definitions of known malware.”

− Currency Requirement
“The system or subsystem shall daily update its list of published definitions of
known malware.”

− Disinfection Requirement
“Where practical, the system or subsystem shall disinfect any data or software
found to contain malware.”

− Deletion [Quarantine] Requirement
“The system or subsystem shall delete [quarantine] all infected data and software
that it cannot successfully disinfect.”

− Notification Requirement
“The system or subsystem shall notify a member of the security team if it detects a
harmful program during scanning.”

E.3.2.2 Example Integrity Arguments

The example integrity security case includes the following example arguments covering the
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims:

• Anti-Malware Subsystem
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS antivirus application.

224 CMU/SEI-2006-HB-001

Rationale: The COTS antivirus application supports the achievement of the system or
subsystem’s communications, data, and software integrity goals and requirements be-
cause it detects and quarantines malware (e.g., viruses, worms, and Trojan horses),
thereby preventing them from corrupting communications, data, and software.

• Encryption/Decryption Subsystem
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS encryption/decryption application.

Rationale: The COTS encryption/decryption application supports the achievement of the
system or subsystem’s communications and data integrity goals and requirements be-
cause it
− encrypts and decrypts all sensitive communications and stored data
− incorporates hash codes that are changed if the communications are corrupted

• Intrusion Detection Subsystem
Architectural Decision: The system or subsystem architecture includes a subsystem con-
sisting of a COTS intrusion detection application.

Rationale: The COTS intrusion detection application supports the achievement of the
system or subsystem’s data and software integrity goals and requirements because it de-
tects, records, and warns of specific types of intrusions that could result in data and
software corruption.

• Network Security Devices
Architectural Decision: The system or subsystem architecture includes multiple COTS
network security devices including
− multiple firewalls that create protected demilitarized zones
− routers that can be properly configured
Rationale: The COTS network security devices support the achievement of the subsys-
tem’s data and software integrity goals and requirements because they protect sensitive
communications, data, and software from corruption.

• Tamper-Proofing
Architectural Decision: The system or subsystem architecture includes the following
tamper-proofing countermeasures:
− volatile random access memory for the temporary storage of all unencrypted data

combined with a means to cut power to the device
− explosive/inflammatory charges to destroy stored data if physical security is com-

promised (e.g., classified data stored in military aircraft that is shot or forced down)
Rationale: The system or subsystem architecture supports the achievement of data, hard-
ware, and software integrity goals and requirements because these tamper-proofing
countermeasures make it difficult to
− corrupt data, hardware, and software components
− not have any such corruptions detected

CMU/SEI-2006-HB-001 225

• Physical Security Countermeasures
Architectural Decision: The system or subsystem architecture includes the following
physical security countermeasures (e.g., fences, armed guards, locked doors, secured
rooms and vaults, cameras, and sensors):
Rationale: These physical security countermeasures support the achievement of hard-
ware integrity goals and requirements because they minimize attacker physical access to
data, software, and hardware assets.

E.3.2.3 Example Integrity Evidence

The example integrity security case includes the following acceptable example evidence that
could be supplied by the architects to support their associated arguments:

• Configuration Diagram
The configuration diagram provides evidence for the existence of the anti-malware, en-
cryption/decryption, and intrusion detection subsystems by clearly showing the decom-
position of the aggregate system or subsystem into its component subsystems, of which
these are three.

• Allocation Diagram
The allocation diagram provides evidence for the location of the anti-malware, encryp-
tion/decryption, and intrusion detection subsystems by clearly showing the allocation of
these software subsystems to specific hardware server computers.

• Network Diagrams
Network diagrams provide evidence for the network connectivity of the anti-malware,
encryption/decryption, and intrusion detection subsystems as well as the network secu-
rity devices (e.g., firewalls, routers) to
− computers and devices involved in sensitive communications
− disk and tape libraries storing sensitive data
− servers hosting sensitive software
This allows the architects to show how the network enables the system or subsystem to
ensure the integrity of sensitive communications, data, and software.

• Activity and Collaboration Diagrams
The activity and collaboration diagrams provide evidence of the interactions between
the anti-malware, encryption/decryption, and intrusion detection subsystems, other sub-
systems, users, and external systems. This allows the architects to show how these inter-
actions enable the system or subsystem to protect the integrity of its sensitive communi-
cations, data, and software.

• Integrity COTS Trade Study
The integrity trade study provides evidence in the form of an evaluation of the various
COTS anti-malware, encryption/decryption, and intrusion detection products, network
security devices, their vendors, and the relative ability of these products to meet the in-
tegrity requirements allocated to the system or subsystem. This allows the architects to

226 CMU/SEI-2006-HB-001

demonstrate the adequacy of the chosen products to meet their allocated integrity re-
quirements.

• Vendor-Supplied Technical Documentation
The vendor-supplied technical documentation for the selected anti-malware product, en-
cryption/decryption product, intrusion detection product, and network security devices
provide evidence that these products has the capabilities needed to meet the integrity re-
quirements of the system or subsystem.

• Security Policy
The security policy produced by the security team provides evidence in the form of
countermeasures used to ensure integrity of data, hardware, and software components.

• Security White Paper
The relevant sections of the security white paper provide evidence in the form of de-
scriptions of the capabilities of the chosen products and the results of analyses of the
adequacy of these products. This allows the architects to demonstrate the adequacy of
the chosen products to meet their allocated integrity requirements.

• Hardware Schematics
The hardware schematics provide evidence of tamper-proofing of sensitive hardware
components.

• Facility Plans
The facility plans provide evidence of physical security countermeasures such as the lo-
cation of secure rooms and vaults, the location of armed guards and fences, and the loca-
tion of security devices such as cameras and door-locking mechanisms.

E.3.3 Example Privacy Security Case
Privacy is the degree to a system or subsystem keeps sensitive identifications, data, and
communications secret from unauthorized individuals, organizations, software applications,
and other systems. Privacy consists of the following security subfactors:

• Anonymity is the degree to which a system or subsystem keeps private the identity of
individuals, organizations, applications, and systems from unauthorized individuals, or-
ganizations, software applications, or systems.

• Confidentiality is the degree to which a system or subsystem keeps private sensitive
data and communications from unauthorized individuals, organizations, software appli-
cations, or systems.

Figure 33 is an example quality case diagram summarizing the claims, arguments, and evi-
dence composing the example privacy security case.

CMU/SEI-2006-HB-001 227

Goal:
Architecture Supports Privacy

<<claim>>

Goal:
Architecture Supports

Anonymity
<<claim>>

Architecture
Decision:

Encryption /
Decryption
Subsystem

<<argument>>

Configuration
Diagram

<<evidence>>

Allocation
Diagram

<<evidence>>

Network
Diagrams

<<evidence>>

Activity or
Collaboration

Diagrams
<<evidence>>

Security
Whitepaper

<<evidence>>

Vendor Trade
Studies

<<evidence>>

Vendor-
Supplied
Technical

Documentation
<<evidence>>

Goal:
Architecture Supports

Confidentiality
<<claim>>

Requirements:
Architecture Supports

Anonymity
<<claim>>

Requirements:
Architecture Supports

Confidentiality
<<claim>>

Architecture
Decision:

Separation of
Classified Data
<<argument>>

Architecture
Decision:

Network Security
Devices

<<argument>>

Architecture
Decision:

Tamper-Proofing
<<argument>>

Architecture
Decision:
Physical
Security

<<argument>>

justify belief in

Facility Maps
<<evidence>>

Security
Policy

<<evidence>>

Hardware
Schematics

<<evidence>>

Data Flow
Diagrams

<<evidence>>

support

Block
Diagrams

<<evidence>>

Data Schema
<<evidence>>

Facility Plans
<<evidence>>

Timing
Diagrams

<<evidence>>

Figure 33: Example Privacy Quality Case Diagram

The example privacy security case is made up of the claims, arguments, and evidence pre-
sented in Sections E.3.3.1, E.3.3.2, and E.3.3.3, respectively.

E.3.3.1 Example Privacy Security Claims

The example privacy security case includes the following example claims:

228 CMU/SEI-2006-HB-001

• Privacy Requirements
Privacy is the degree to which sensitive identifications, data, and communications is
kept secret from unauthorized individuals, organizations, software applications, and sys-
tems:68

− Anonymity (identity) Requirements
whereby anonymity protects identities
− “The system or subsystem shall prevent the unauthorized disclosure of the identity

of [some class of users].”
− Confidentiality Requirements

whereby confidentiality protects data and communications
− “The system or subsystem shall prevent the unauthorized disclosure of [some class

of sensitive data or communications].”

E.3.3.2 Example Privacy Arguments

The example privacy security case includes the following example arguments covering the
architectural decisions the architects have made to justify the assessors’ belief in the associ-
ated claims:

• Encryption/Decryption Subsystem
Architectural Decision: The system or subsystem architecture will include a subsystem
consisting of a COTS encryption/decryption application.

Rationale: This subsystem supports confidentiality by encrypting and decrypting all sen-
sitive data when both stored and transmitted.

• Network Security Devices
Architectural Decision: The system or subsystem architecture incorporates network se-
curity devices including firewalls and routers. For example, the architecture incorporates
multiple firewalls at strategic locations in the network.

Rationale: The firewalls create “demilitarized zones” that protect sensitive data from un-
authorized external access.

• Separation of Classified Data
Architectural Decision: The system or subsystem architecture separates classified data at
different levels of classification onto separate physical processors, OS processes, and
storage (e.g., disk and tape libraries).

68 Technically, security is concerned with preventing and detecting the malicious disclosure of sensi-

tive identities, data, and communications during an attack, whereas safety is concerned with pre-
venting and detecting their accidental disclosure during an accident. Note that both attacks and
accidents can result in the same harm to valuable assets (i.e., to individuals, organizations, and
their sensitive data) and that the architects can give the same arguments as part of both safety and
security cases because they can use the same architecture mechanisms (controls) as both safe-
guards and countermeasures.

CMU/SEI-2006-HB-001 229

Rationale: This separation makes it difficult for data and services at higher levels of
classification to mix with and be accessed by data and services at lower levels of classi-
fication.

• Physical Security
Architectural Decision: The system architecture places its valuable assets (e.g., people
and property such as sensitive data, valuable hardware, and private services) within
locked facilities and vaults protected by cameras and armed guards.

Rationale: The architecture of the system or subsystem supports the achievement of its
allocated physical security requirements.

• Tamper-Proofing
Architectural Decision: The architecture of the system or subsystem supports the
achievement of its data confidentiality requirements by using
− volatile random access memory for the temporary storage of all unencrypted data

combined with a means to cut power to the device
− explosive/inflammatory charges to destroy stored data if physical security is com-

promised (e.g., classified data stored in military aircraft that is shot or forced down).

E.3.3.3 Example Privacy Evidence

The example privacy security case includes the following acceptable example evidence that
could be supplied by the architects to support their associated arguments:

• Activity/Collaboration Diagram
One or more activity and collaboration diagrams are used as valid evidence to support
the architects’ privacy arguments as follows:
− Encryption/Decryption Subsystem

Activity and collaboration diagrams document the existence, location, and use of the
encryption/decryption subsystem including interactions between the encryp-
tion/decryption subsystem, other subsystems, users, and external systems.

• Allocation Diagram
One or more allocation diagrams are used as valid evidence to support the architects’
privacy arguments as follows:
− Encryption/Decryption Subsystem

An allocation diagram documents the existence and location of the encryp-
tion/decryption subsystem by clearly showing the allocation of the encryp-
tion/decryption subsystem to hardware (i.e., one or more server computers).

• Block Diagrams
One or more block diagrams are used as valid evidence to support the architects’ privacy
arguments as follows:
− Tamper-Proofing

Block diagrams provide evidence for adequate tamper-proofing by documenting the
existence of explosive/inflammatory charges to destroy stored data if physical secu-

230 CMU/SEI-2006-HB-001

rity is compromised (e.g., classified data stored in military aircraft that is shot or
forced down).

• Configuration Diagram
One or more configuration diagrams are used as valid evidence to support the architects’
privacy arguments as follows:
− Encryption/Decryption Subsystem

A configuration diagram documents the existence of the encryption/decryption sub-
system by clearly documenting the decomposition of the aggregate system or subsys-
tem into its component subsystems with the encryption/decryption subsystem identi-
fied.

• Data Flow Diagram
One or more data flow diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows:
− Encryption/Decryption Subsystem

Data flow diagrams document the existence, location, and use of the encryp-
tion/decryption subsystem by documenting the movement of encrypted and de-
crypted data through the system or subsystem.

− Separation of Classified Data
Data flow diagrams document the proper separation of sensitive data at different lev-
els of classification by documenting the movement of sensitive data of different clas-
sification levels through the system or subsystem.

• Data Schemas
One or more logical and physical data schemas are used as valid evidence to support the
architects’ privacy arguments as follows:
− Separation of Classified Data

Logical and physical data schemas document the proper separation of sensitive data
at different levels of classification by documenting the storage of data of different
classification levels.

• Facility Plans
The facility floor plans are used as valid evidence to support the architects’ privacy ar-
guments as follows:
− Physical Security

Facility floor plans provide acceptable evidence for adequate physical security by
documenting the
− location of valuable assets including people, property (e.g., sensitive data, hard-

ware, and software), and access to service
− location of armed guards, locked doors, and secure areas (e.g., rooms and vaults)
− location of security devices such as cameras, motion sensors, and physical access

devices (e.g., locks, biometric sensors)
− Facility Maps

Facility maps are used as valid evidence to support the architects’ privacy arguments
as follows:

CMU/SEI-2006-HB-001 231

− Physical Security
One or more facility maps document physical security by documenting the loca-
tion of security fences and sensors.

• Hardware Schematics
One or more hardware schematics are used as valid evidence to support the architects’
privacy arguments as follows:
− Tamper-Proofing

Hardware schematics provide evidence for adequate tamper-proofing by document-
ing the existence of explosive/inflammatory charges to destroy stored data if physical
security is compromised (e.g., classified data stored in military aircraft that is shot or
forced down).

• Network Diagram
One or more network diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows:
− Encryption/Decryption Subsystem

Network diagrams document the existence and location of the encryption/decryption
subsystem by showing the connectivity between the server(s) hosting the encryp-
tion/decryption subsystem, the servers hosting and storage devices storing the data
the encryption/decryption subsystem protects, and related networks and network de-
vices, enabling the architects to show how the location of the encryption/decryption
subsystem enables it to protect the associated sensitive data.

− Network Security Devices
Network diagrams document the network devices having security functions including
the networks, clients, and servers, enabling the architects to show
− the existence, location, and adequacy of the network devices having security func-

tions (e.g., firewalls and routers)
− associated demilitarized zones
− potential attack paths
− how the location of these devices enables them to properly perform their security

functions
− Separation of Classified Data

Network diagrams document the proper separation of sensitive data at different levels
of classification by showing connectivity between the server(s) hosting the software
components creating/accessing/using/storing sensitive data, storage devices (e.g.,
disk and tape libraries) that store such data, and the possible paths along which such
data can flow.

• Security Policy
The security policy used as valid evidence to support the architects’ privacy arguments
as follows:
− Physical Security

The security policy documents how physical security will be achieved.
− Tamper-Proofing

The security policy documents how adequate tamper-proofing will be achieved.

232 CMU/SEI-2006-HB-001

• Security White Paper
Security white papers are used as valid evidence to support the architects’ privacy argu-
ments as follows:
− Encryption/Decryption Subsystem

The security white paper documents the existence, location, capabilities, and use of
the encryption/decryption subsystem in its encryption/decryption section.

− Network Security Devices
The security white paper documents the existence, location, capabilities, and use of
the network devices having security functions (e.g., firewalls and routers) in its net-
work security section.

− Separation of Classified Data
The security white paper documents the proper separation of sensitive data at differ-
ent levels of classification by documenting how data of different classification levels
are kept separate.

− Tamper-Proofing
The security white paper on tamper-proofing provides evidence for adequate tamper-
proofing by documenting the use of volatile random access memory for the tempo-
rary storage of all unencrypted data combined with a means to cut power to it when
necessary so that the data is deleted.

• Timing Diagrams
One or more timing diagrams are used as valid evidence to support the architects’ pri-
vacy arguments as follows:
− Separation of Classified Data

Timing (and process) diagrams document the proper separation of sensitive data at
different levels of classification by documenting the allocation of data at different
classification levels to different OS processes or time slices.

− Vendor-Supplied Technical Documentation
Vendor-supplied technical documentation is used as valid evidence to support the ar-
chitects’ privacy arguments as follows:
− Encryption/Decryption Subsystem

The vendor-supplied technical documentation for the selected encryp-
tion/decryption subsystem documents the capabilities of this subsystem in the as-
sociated sections.

− Network Security Devices
The vendor-supplied technical documentation for the selected network devices
having security functions (e.g., firewalls and routers) documents the capabilities of
these devices in the associated sections.

− Vendor Trade Studies
Vendor trade studies are used as valid evidence to support the architects’ privacy ar-
guments as follows:
− Encryption/Decryption Subsystem

The encryption/decryption vendor trade study documents the capabilities of the se-
lected subsystem in the section on the selected subsystem.

CMU/SEI-2006-HB-001 233

− Network Security Devices
The security vendor trade study documents the security capabilities of the network
devices having security functions (e.g., firewalls and routers).

E.4.4 Example Security Auditing Security Case
The security subfactor, security auditing, is the degree to which the system or subsystem en-
ables security personnel to audit the status and use of security mechanisms69 by analyzing
security-related events.

The example security auditing security case is made up of the claims, arguments, and evi-
dence presented in Sections E.3.4.1, E.3.4.2, and E.3.4.3, respectively.

E.4.4.1 Example Security Auditing Claims

The example security auditing security case includes the following example claims:

• Security Auditing Requirements
whereby security auditing is the degree to which the system or subsystem enables secu-
rity personnel to audit the status and use of security mechanisms by analyzing associated
security-related events

− Security Audit Control Requirements
− “At least 99.9% of the time, the system or subsystem shall automatically start se-

curity auditing within 0.1 seconds of startup and restart.”
− “At least 99.99% of the time, the system or subsystem shall enable [an explicitly

identified and authenticated list of individuals, user roles, or user groups] to start
and stop security auditing.”

− “At least 99.99% of the time, the system or subsystem shall enable [an explicitly
identified and authenticated list of individuals, user roles, or user groups] to read
and modify the security events to be audited.”

− Security Audit Log Content Requirements
− “The system or subsystem shall record at least 99.99% of the following security-

related events:
o security audit startup
o security audit shutdown
o access control events (including successful and unsuccessful identification, au-

thentication, and authorization events)
o changes in access control
o intrusion detection (including attempts to control security auditing or to mod-

ify the security log)
o [application-specific entries]”

69 See http://www.opfro.org/Glossary/GlossaryS.html#security_mechanism for more information.

234 CMU/SEI-2006-HB-001

http://www.opfro.org/Glossary/GlossaryS.html#security_mechanism

− “At least 99.99% of the time, the system or subsystem shall include the following
information within each security audit record:
o date and time of the security event
o type of security event
o parties (e.g., human, external application, software process) to the security

event
o outcome (e.g., success, failure) of security event
o [application-specific entries]”

− Security Audit Reporting
− “At least 99.9% of the time, the system or subsystem shall enable the following

explicitly identified and authenticated individuals, user roles, or user groups to
read/search/sort the security audit records: [an application-specific list].”

− “At least 99.99% of the time, the system or subsystem shall enable the following
explicitly identified and authenticated individuals, user roles, or user groups to
read/generate the security audit reports: [an application-specific list].”

− Security Audit Log Protection
− “At least 99.9% of the time, the system or subsystem shall protect the audit log

contents from being modified for at least one day when under attack by a hacker of
medium-sophistication.”

− “At least 99.9% of the time, the system or subsystem shall detect any attempts to
modify the audit log contents by a hacker of medium-sophistication during a one
day period.”

− “At least 99.9% of the time, the system or subsystem shall protect the audit log
contents for at least one day from unauthorized deletion by a hacker of medium
sophistication.”

− “At least 99.99% of the time, the system or subsystem shall notify the following
identified and authenticated individuals, user roles, or user groups if the security
audit log exceeds [an application-specific size]: [an application-specific list].”

− “At least 99.99% of the time, the system or subsystem shall retain at least the 500
most recent audit log records when any of the following exceptional conditions
occur:
o failure of audit hardware or software components
o exhaustion of audit log storage”

E.3.4.2 Example Security Audit Security Case Arguments

The example security audit security case includes the following example arguments covering
the architectural decisions the architects have made to justify the assessors’ belief in the asso-
ciated claims:

• COTS Security Audit Subsystem
Architectural Decision: The architecture includes a COTS security audit subsystem.

Rationale: Compared to an in-house developed system, the COTS subsystem is of
higher quality, costs significantly less, and will decrease development time. It meets the
security audit control, audit log contents, audit reporting, and audit log protection re-
quirements.

CMU/SEI-2006-HB-001 235

E.3.4.3 Example Security Audit Security Case Evidence

The example security audit security case includes the following acceptable example evidence
that could be supplied by the architects to support their associated arguments:

• Configuration Diagram
A configuration diagram clearly shows the decomposition of the aggregate system or
subsystem into its component subsystems with the security audit subsystem identified.

• Allocation Diagram
An allocation diagram clearly shows the allocation of the security audit subsystem to
hardware (i.e., one or more server computers).

• Network Diagram
One or more network diagrams show connectivity between the server(s) hosting the se-
curity audit subsystem, other servers, and related networks and network devices (e.g.,
firewalls and routers), enabling the architects to show
− where security event information is generated
− where security events are logged
− the flow of security event notifications
− how the location of the security audit subsystem enables it to properly perform its

functions

• Collaboration Diagram and/or Activity Diagram
One or more collaboration diagrams or activity diagrams document interactions between
the security audit subsystem, other subsystems, and attackers.

• Security White Paper
A security white paper documents the capabilities of the security audit subsystem.

• Trade Study
A trade study documents the capabilities of the security audit subsystems that were con-
sidered for use in the system architecture.

• Vendor-Supplied Technical Description
Vendor-supplied technical description documents the capabilities of the security audit
subsystem.

236 CMU/SEI-2006-HB-001

E.4 Example Stability Case
Stability is the degree to which a system or subsystem continues to deliver mission-critical
services during a given time period under a given operational profile regardless of any fail-
ures whereby the

• failures may prevent the system or subsystem from delivering less critical services

• failures limiting the delivery of mission-critical services occur at unpredictable times

• root causes of such failures are difficult to identify efficiently

A system is stable to the degree that minor failures do not cascade into major failures.

E.4.1 Example Stability Protection Case
As a stability subfactor, stability protection is the degree to which the system is stable as op-
posed to detecting when it is not stable or reacting properly when it is not stable.

Figure 34 is an example stability quality case diagram summarizing the claims, arguments,
and evidence composing the example stability case.

CMU/SEI-2006-HB-001 237

Goal:
Architecture Supports

Stability Protection
<<claim>>

Architecture
Decision:

Criticality-Based
Allocation of

Requirements to
Components

<<argument>>

justifies belief in

Architecture
Decision:

Partitioning of
Shared

Hardware
Resources

<<argument>>

Architecture
Decision:

Protecting
Shared

Software
Resources

<<argument>>

Architecture
Decision:

Well-Formed
Dependencies

between Software
Components

<<argument>>

Quality Subfactor

Requirements
Specification
<<evidence>>

Requirements
Repository

<<evidence>>

Architecture
Document

<<evidence>>

Architecture
Rules

Inspection
Results

<<evidence>>

Stability
Whitepaper

<<evidence>>

supports

Requirements:
Architecture Supports

Stability Protection
<<claim>>

Goal:
Architecture Supports Stability

<<claim>>
Quality Factor

Goal:
Architecture Supports

Stability Loss Detection
<<claim>>

Goal:
Architecture Supports
Stability Loss Reaction

<<claim>>

Architecture
Decision:

Include Hooks
for Stability
Verification

<<argument>>

Activity /
Collaboration

Diagram
<<evidence>>

Hardware
Schematics

<<evidence>>

Figure 34: Example Stability Quality Case Diagram

The example stability quality case is made up of the claims, arguments, and evidence pre-
sented in Sections E.4.1.1, E.4.1.2, and E.4.1.3, respectively.

E.4.1.1 Stability Claims

The example stability performance case includes the following example claims:

• Goals
− Architecture Supports Stability Goal

Claim: The system or subsystem architecture adequately supports the stability of the
system or subsystem.

238 CMU/SEI-2006-HB-001

• Requirements
− Architecture Supports Stability Requirements

Claim: The architecture adequately supports the system or subsystem’s ability to
meet the following derived stability requirements that have been allocated to it:
− Mean Time Between Critical Failures (Stability Requirement)

“Under normal operating conditions, the system shall not lose mission-critical
functionality more often than an average of once every 5,000 hours of operation
(i.e., the mean time between critical failures70 is at least 5,000 hours of opera-
tion).”

− Cascading Failures (Stability Requirement)
“Under normal operating conditions, the system shall prevent critical failures in
any lower criticality subsystem from cascading into failures of its higher criticality
subsystems with a mean time between critical failures of at least 5,000 hours of
operation.”

− Well-Formed Interactions (Stability Constraint)
“Interactions between subsystems at different levels of criticality shall be well
formed.”

E.4.1.2 Example Stability Arguments

The example stability case includes the following example arguments covering the architec-
tural decisions the architects have made to justify the assessors’ belief in the associated
claims:

• Critically Based Allocation of Requirements to Components
Architectural Decision: Except in a small number of identified and justified cases, each
architectural component implements requirements that are classified as having a single
criticality level.

Rationale: System requirements are classified into a partially order set of distinct criti-
cality levels according to overall mission needs. Architectural components at higher lev-
els of criticality must be better engineered than components at lower levels of criticality.
Allocating a mixture of critical and non-critical requirements to a single architectural
component would require that the component be engineered at the highest critical level
of all requirements allocated to the component, which would significantly increase the
effort and cost required to design, implement, and test the component.

This architecture decision improves stability because it lowers engineering costs and
lowers the coupling between software that implements higher criticality and lower criti-
cality requirements.

70 A critical failure is defined as any failure that results in the loss of mission-critical functionality.

CMU/SEI-2006-HB-001 239

• Partitioning of Shared Hardware Resources
Architectural Decision: Based on the criticality of the requirements allocated to software
architectural components, the architecture partitions and allocates the following kinds of
shared hardware resources to these software components:
− CPU cycles
− communication bandwidth
− storage
Rationale: Hardware resource budgets are established for each software component and
performance analyses of current estimated software component resource utilization ver-
ify that the allocated budgets should be adequate.71 Partitioning hardware resources is
the simplest approach to ensure critical services will have adequate hardware resources.
Lower criticality software components must not overuse storage because they may cor-
rupt code or data of higher level criticality components.

This architectural decision improves stability because it prevents the overuse of hard-
ware resources by lower criticality software components from causing the failure of
higher criticality software components.

• Protecting Shared Software Resources
Architectural Decision: Designers and implementers are required to adhere to the fol-
lowing architectural rules:
− Software components are forbidden to use system calls (e.g., kill) that can interfere

with the execution of other applications. Only system managers can terminate ill-
behaving software components.

− The longest system call must be within the designated limits, which are published
and available for schedulability analysis.

− All shared libraries used by software components are re-entrant.
Rationale: The system architecture partitions shared software resources to prevent soft-
ware components at different levels of criticality from corrupting shared services (e.g.,
OS and middleware) by ensuring that the software components cannot interfere with
each other via those shared services. If lower criticality software components takes too
long when using a shared resource, it may delay the execution of a higher criticality
software component that is waiting for the service. If the software in a shared library is
not re-entrant, then the next user could be adversely affected if the calling software
component fails in the middle of a library call.

This architecture decision improves stability because it prevents failures of lower criti-
cality components from causing failures of higher criticality components.

71 Note that at the current time during development, the adequacy of the allocated resource budgets

cannot be completely verified because the detailed design of the subsystem is not yet complete.

240 CMU/SEI-2006-HB-001

• Well-Formed Dependencies between Software Components
Architectural Decision: Designers and implementers are required to adhere to the fol-
lowing architectural rules:
− Software components allocated requirements of different criticality can only interact

via asynchronous message passing.
− The logical dependencies resulting from message exchanges between software com-

ponents that are allocated requirements of different criticality must be verifiably well
formed.72

Rationale: If two software components interact via shared variables and one fails while
holding a lock on the shared variable, then the other software components needing ac-
cess to the shared variable will be locked. A similar problem will occur if send-wait
(aka, synchronous message passing) is used. Restricting interactions to asynchronous
message passing avoids this kind of failure. If all logical dependencies resulting from
message exchanges are verified to be well-formed, then faults and failures in the less
critical component will not cause failures in the more critical components.

This architectural decision improves stability because it prevents failures of lower-
criticality components from causing failures of higher-criticality components.

• Include Hooks for Stability Verification
Architectural Decision: Hardware and software components include hooks for later sta-
bility verification.
− Hardware hooks include such things as testing pins on the board or a network testing

harness.
− Software hooks include annotations for static analysis, instrumented code, and inter-

faces for test messages.
Rationale: Because stability depends on reliability, if the hardware component does not
have the required reliability, then it should provide hardware interfaces to support sub-
sequent diagnostics. Such hardware testing access enables testers to trace potential prob-
lems back to their source components during integration testing.

Note that although this architectural decision is usually used during prototyping and de-
velopment rather than for production, care must be exercised because removal of the
hook might have unexpected side-effects to the production system (i.e., you are deliver-
ing something other than what you tested). Note that if the hooks are left in, then this ar-
chitectural decision may have negative security implications. Hooks may also have
negative impacts on performance.

72 By “well-formed dependency” we mean that the critical service is not allowed to use a less critical service

unless we can verify that the critical services cannot be compromised by the faults and failures in the less
critical services. For example, in a passenger jet, the navigation system may use the entertainment subsystem
to inform passengers about the current location and the speed of the plane. However, to do that we must be
able to verify that faults and failures in the entertainment system cannot compromise navigation.

CMU/SEI-2006-HB-001 241

This architectural decision improves stability because it enables the early detection and
removal of stability problems.

E.4.1.3 Example Stability Evidence

The example stability case includes the following acceptable example evidence that could be
supplied by the architects to support their associated arguments:

• Requirements Specification
The system or subsystem requirements specification documents the criticality levels of
the individual requirements73 allocated to the system or subsystem respectively.

• Requirements Repository
The requirements repository stores the criticality levels of the individual requirements as
metadata associated with the individual requirements.

• Architecture Document
The architecture document provides an overview of the architecture decisions improving
stability and their rationales.

• Architecture Rule Inspection Results
This documentation reports the results of inspections that verify compliance with archi-
tectural rules including rules to ensure that
− hardware resources are properly partitioned
− interactions between software components are well formed

• Stability White Paper
This document provides detailed descriptions of architecture decisions improving stabil-
ity and their rationales.

• Activity/Collaboration Diagram
One or more activity or collaboration diagrams document test interfaces (e.g., using
UML stereotypes).

• Hardware Schematics
One or more hardware schematics document test interfaces.

73 This includes classifying the criticality of all functional, data, interface, and quality requirements.

242 CMU/SEI-2006-HB-001

Appendix F Example Contract Language

To ensure that adequate resources are included in architecture plans and schedules, it is im-
portant for acquisition organizations to include appropriate contract language in requests for
proposals (RFPs) and development contracts. The following is provided as example, tailor-
able contract language to mandate the performance of system architecture quality assess-
ments based on architect-supplied quality cases:

1. As the system architecture is developed, the contractor shall support incremental as-
sessments of the quality of the system architecture.

2. Support for system architecture quality assessments shall be documented in architecture
plans, procedures, and schedules.

3. The system architecture quality assessment method shall be based on architect-
developed quality cases provided and presented to the assessment team(s).

4. The system architecture shall be assessed in terms of the ability of the architectures of its
subsystems to sufficiently support the achievement of the prioritized quality goals and
requirements that have been derived and allocated to the subsystems.

5. The assessment team shall be led by members of the acquisition organization.

6. During these subsystem architecture quality assessments, the subsystem architects shall
make compelling quality cases to the assessment team that their architectures suffi-
ciently support the achievement of the associated quality goals and requirements.

7. The subsystem architects shall provide clear and compelling arguments stating the archi-
tectural decisions that they have made and their rationales for making these decisions.

8. The subsystem architects shall provide the assessment team with access to sufficient
evidentiary documentation (or hold acquirer-witnessed demonstrations) to support their
arguments and thereby justify their claims that their architectures adequately support the
subsystem’s ability to achieve its quality goals and requirements.

The preceding language is intended to be tailored to meet the needs of the specific contract.
For example, the following aspects of the above languages should be considered for tailoring:

• Item 2 – Where should support for the system architecture quality assessments be docu-
mented? Who approves the adequacy and quality of this documentation?

• Item 5 – Who should lead the assessment team: the acquisition organization or contrac-
tor? What organizations are responsible for what aspects of the assessments? To what
degree should assessments be independent of the architecture team? Should the assess-
ments be internal to the development organization or performed by an independent or-

CMU/SEI-2006-HB-001 243

ganization? Should the acquisition organization take part in the assessment team? If so,
should they lead the assessment team?

• What about subcontractors? Must the prime contractor mandate system architecture
quality assessments onto subcontractors of major subsystems? Down to what level?
Should the acquisition organization be involved in these assessments?

• What if the acquisition organization and contractor do not agree on the scope of the as-
sessments (e.g., subsystems and quality factors)?

244 CMU/SEI-2006-HB-001

References

URLs are valid as of the publication date of this document.

[Bishop 98] Bishop, Peter & Bloomfield, Robin. A Methodology for Safety Case
Development.
http://www.adelard.co.uk/resources/papers/pdf/sss98web.pdf
(1998).

[Clements 02] Clements, Paul; Kazman, Rick; & Klein, Mark. Evaluating Soft-
ware Architectures: Methods and Case Studies. Boston, MA: Addi-
son-Wesley, 2002.

[Firesmith 03] Firesmith, Donald G.. “Using Quality Models to Engineer Quality
Requirements.” Journal of Object Technology (JOT) 2, 5 (Septem-
ber-October 2003): 67-75.
http://www.jot.fm/issues/issue_2003_09/column6

[ISO 91] International Organization for Standardization. International Stan-
dard ISO/IEC 9126. Information technology–Software product
evaluation–Quality characteristics and guidelines for their use.
Geneva, Switzerland: International Organization for Standardiza-
tion, International Electrotechnical Commission (IEC), 1991.

[OPFRO 06] Open Process Framework Repository Organization. OPEN Process
Framework Repository Organization Website. http://www.opfro.org
(2006).

[Weinstock 04] Weinstock, Charles B.; Goodenough, John B.; & Hudak, John J.
Dependability Cases (CMU/SEI-2004-TN-016) Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tn016.html

CMU/SEI-2006-HB-001 245

http://www.adelard.co.uk/resources/papers/pdf/sss98web.pdf
http://www.jot.fm/issues/issue_2003_09/column6
http://www.opfro.org
http://www.sei.cmu.edu/publications/documents/04.reports

246 CMU/SEI-2006-HB-001

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

QUASAR: A Method for the Quality Assessment of Software-Intensive
System Architectures

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Donald Firesmith
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-HB-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This handbook documents the QUASAR (QUality Assessment of System ARchitectures) method for assess-
ing the quality of the architecture of a software-intensive system. It begins by discussing the challenges that
are faced when assessing a system’s architecture and out-lines the development history of the method. The
next section of the handbook documents the concept of quality cases and the claims, arguments, and evi-
dence that compose them. This is followed by a description of the teams that collaborate to perform QUASAR
tasks. Next, individual tasks and associated steps performed as part of the QUASAR method are docu-
mented. Next, the work products produced by these teams when performing these tasks are described. Fi-
nally, lessons learned during the development and use of the method when assessing the quality of major
subsystems during the development of a very large, software-intensive system of systems are presented.
Also provided are appendices that define common quality factors and subfactors, offer reusable checklists,
and give examples of quality cases. The example quality cases illustrate valid quality goals and requirements
that compose claims, example architecture decisions and associated rationales that compose arguments, and
the types of evidence that architects might provide.

14. SUBJECT TERMS

acquisition, architecture, architecture evaluation, COTS, software-
intensive system, metric, interoperability, metric, security, quality, sys-
tem architecture, safety

15. NUMBER OF PAGES

266

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	QUASAR: A Method for the QUality Assessment of Software-Intensive System ARchitectures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Executive Summary
	Abstract
	1 Introduction
	2 QUASAR Overview
	3 Quality Cases
	4 QUASAR Teams
	5 QUASAR Phases and Tasks
	6 QUASAR Work Products
	7 QUASAR Lessons Learned
	8 Future Directions
	9 Conclusion
	Appendix A Acronyms and Abbreviations
	Appendix B Glossary
	Appendix C Quality
	Appendix D Example Checklists
	Appendix E Example Quality Cases
	Appendix F Example Contract Language
	References

